Common Core: 4th Grade Math : Know Relative Sizes of Measurement Units: CCSS.Math.Content.4.MD.A.1

Study concepts, example questions & explanations for Common Core: 4th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #341 : How To Multiply

Fill in the missing piece of the table. 

Screen shot 2015 09 02 at 9.01.29 am

 

Possible Answers:

\(\displaystyle 80\)

\(\displaystyle 88\)

\(\displaystyle 86\)

\(\displaystyle 84\)

\(\displaystyle 82\)

Correct answer:

\(\displaystyle 84\)

Explanation:

To solve this problem we can set up a proportion and cross multiply to solve for our unknown. 

\(\displaystyle \frac{1ft}{12in}=\frac{7ft}{x}\)

First we cross multiply. 

\(\displaystyle 1ft(x)=7ft(12in)\) 

Then we divide each side by \(\displaystyle 1ft\) to isolate the \(\displaystyle x\).

\(\displaystyle \frac{1ft(x)}{1ft}=\frac{7ft(12in)}{1ft}\)

\(\displaystyle x=84in\)

Example Question #342 : How To Multiply

Fill in the missing piece of the table. 

Screen shot 2015 09 02 at 9.01.39 am

 

Possible Answers:

\(\displaystyle 70\)

\(\displaystyle 66\)

\(\displaystyle 74\)

\(\displaystyle 68\)

\(\displaystyle 72\)

Correct answer:

\(\displaystyle 72\)

Explanation:

To solve this problem we can set up a proportion and cross multiply to solve for our unknown. 

\(\displaystyle \frac{1ft}{12in}=\frac{6ft}{x}\)

First we cross multiply. 

\(\displaystyle 1ft(x)=6ft(12in)\) 

Then we divide each side by \(\displaystyle 1ft\) to isolate the \(\displaystyle x\).

\(\displaystyle \frac{1ft(x)}{1ft}=\frac{6ft(12in)}{1ft}\)

\(\displaystyle x=72in\)

Example Question #51 : Know Relative Sizes Of Measurement Units: Ccss.Math.Content.4.Md.A.1

Fill in the missing piece of the table. 

Screen shot 2015 09 02 at 9.01.50 am

 

Possible Answers:

\(\displaystyle 60\)

\(\displaystyle 55\)

\(\displaystyle 45\)

\(\displaystyle 50\)

\(\displaystyle 65\)

Correct answer:

\(\displaystyle 60\)

Explanation:

To solve this problem we can set up a proportion and cross multiply to solve for our unknown. 

\(\displaystyle \frac{1ft}{12in}=\frac{5ft}{x}\)

First we cross multiply. 

\(\displaystyle 1ft(x)=5ft(12in)\) 

Then we divide each side by \(\displaystyle 1ft\) to isolate the \(\displaystyle x\).

\(\displaystyle \frac{1ft(x)}{1ft}=\frac{5ft(12in)}{1ft}\)

\(\displaystyle x=60in\)

Example Question #52 : Know Relative Sizes Of Measurement Units: Ccss.Math.Content.4.Md.A.1

Fill in the missing piece of the table. 

Screen shot 2015 09 02 at 9.02.03 am

 

Possible Answers:

\(\displaystyle 46\)

\(\displaystyle 42\)

\(\displaystyle 50\)

\(\displaystyle 44\)

\(\displaystyle 48\)

Correct answer:

\(\displaystyle 48\)

Explanation:

To solve this problem we can set up a proportion and cross multiply to solve for our unknown. 

\(\displaystyle \frac{1ft}{12in}=\frac{4ft}{x}\)

First we cross multiply. 

\(\displaystyle 1ft(x)=4ft(12in)\) 

Then we divide each side by \(\displaystyle 1ft\) to isolate the \(\displaystyle x\).

\(\displaystyle \frac{1ft(x)}{1ft}=\frac{4ft(12in)}{1ft}\)

\(\displaystyle x=48in\)

Example Question #345 : How To Multiply

Fill in the missing piece of the table. 

Screen shot 2015 09 02 at 9.02.13 am

 

Possible Answers:

\(\displaystyle 36\)

\(\displaystyle 40\)

\(\displaystyle 44\)

\(\displaystyle 42\)

\(\displaystyle 38\)

Correct answer:

\(\displaystyle 36\)

Explanation:

To solve this problem we can set up a proportion and cross multiply to solve for our unknown. 

\(\displaystyle \frac{1ft}{12in}=\frac{3ft}{x}\)

First we cross multiply. 

\(\displaystyle 1ft(x)=3ft(12in)\) 

Then we divide each side by \(\displaystyle 1ft\) to isolate the \(\displaystyle x\).

\(\displaystyle \frac{1ft(x)}{1ft}=\frac{3ft(12in)}{1ft}\)

\(\displaystyle x=36in\)

Example Question #53 : Know Relative Sizes Of Measurement Units: Ccss.Math.Content.4.Md.A.1

Fill in the missing piece of the table. 

Screen shot 2015 09 02 at 9.02.21 am 

Possible Answers:

\(\displaystyle 24\)

\(\displaystyle 26\)

\(\displaystyle 28\)

\(\displaystyle 22\)

\(\displaystyle 20\)

Correct answer:

\(\displaystyle 24\)

Explanation:

To solve this problem we can set up a proportion and cross multiply to solve for our unknown. 

\(\displaystyle \frac{1ft}{12in}=\frac{2ft}{x}\)

First we cross multiply. 

\(\displaystyle 1ft(x)=2ft(12in)\) 

Then we divide each side by \(\displaystyle 1ft\) to isolate the \(\displaystyle x\).

\(\displaystyle \frac{1ft(x)}{1ft}=\frac{2ft(12in)}{1ft}\)

\(\displaystyle x=24in\)

Example Question #54 : Know Relative Sizes Of Measurement Units: Ccss.Math.Content.4.Md.A.1

Fill in the missing piece of the table. 

Screen shot 2015 09 02 at 9.03.32 am

 

Possible Answers:

\(\displaystyle 4\)

\(\displaystyle 1\)

\(\displaystyle 5\)

\(\displaystyle 2\)

\(\displaystyle 3\)

Correct answer:

\(\displaystyle 2\)

Explanation:

To solve this problem we can set up a proportion and cross multiply to solve for our unknown. 

\(\displaystyle \frac{1ft}{12in}=\frac{x}{24in}\)

First we cross multiply. 

\(\displaystyle 12in(x)=1ft(24in)\) 

Then we divide each side by \(\displaystyle 12in\) to isolate the \(\displaystyle x\).

\(\displaystyle \frac{12in(x)}{12in}=\frac{1ft(24in)}{12in}\)

\(\displaystyle x=2ft\)

Example Question #55 : Know Relative Sizes Of Measurement Units: Ccss.Math.Content.4.Md.A.1

Fill in the missing piece of the table. 

Screen shot 2015 09 02 at 9.03.39 am

Possible Answers:

\(\displaystyle 6\)

\(\displaystyle 4\)

\(\displaystyle 5\)

\(\displaystyle 3\)

\(\displaystyle 7\)

Correct answer:

\(\displaystyle 3\)

Explanation:

To solve this problem we can set up a proportion and cross multiply to solve for our unknown. 

\(\displaystyle \frac{1ft}{12in}=\frac{x}{36in}\)

First we cross multiply. 

\(\displaystyle 12in(x)=1ft(36in)\) 

Then we divide each side by \(\displaystyle 12in\) to isolate the \(\displaystyle x\).

\(\displaystyle \frac{12in(x)}{12in}=\frac{1ft(36in)}{12in}\)

\(\displaystyle x=3ft\)

Example Question #56 : Know Relative Sizes Of Measurement Units: Ccss.Math.Content.4.Md.A.1

Fill in the missing piece of the table. 

Screen shot 2015 09 02 at 9.03.47 am

Possible Answers:

\(\displaystyle 2\)

\(\displaystyle 5\)

\(\displaystyle 3\)

\(\displaystyle 4\)

\(\displaystyle 1\)

Correct answer:

\(\displaystyle 4\)

Explanation:

To solve this problem we can set up a proportion and cross multiply to solve for our unknown. 

\(\displaystyle \frac{1ft}{12in}=\frac{x}{48in}\)

First we cross multiply. 

\(\displaystyle 12in(x)=1ft(48in)\) 

Then we divide each side by \(\displaystyle 12in\) to isolate the \(\displaystyle x\).

\(\displaystyle \frac{12in(x)}{12in}=\frac{1ft(48in)}{12in}\)

\(\displaystyle x=4ft\)

Example Question #54 : Solve Problems Involving Measurement And Conversion Of Measurements

Fill in the missing piece of the table. 

Screen shot 2015 09 02 at 9.03.56 am

Possible Answers:

\(\displaystyle 8\)

\(\displaystyle 7\)

\(\displaystyle 9\)

\(\displaystyle 5\)

\(\displaystyle 6\)

Correct answer:

\(\displaystyle 5\)

Explanation:

To solve this problem we can set up a proportion and cross multiply to solve for our unknown. 

\(\displaystyle \frac{1ft}{12in}=\frac{x}{60in}\)

First we cross multiply. 

\(\displaystyle 12in(x)=1ft(60in)\) 

Then we divide each side by \(\displaystyle 12in\) to isolate the \(\displaystyle x\).

\(\displaystyle \frac{12in(x)}{12in}=\frac{1ft(60in)}{12in}\)

\(\displaystyle x=5ft\)

Learning Tools by Varsity Tutors