Common Core: 3rd Grade Math : Measurement & Data

Study concepts, example questions & explanations for Common Core: 3rd Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #101 : Measurement & Data

Sam leaves for work at \displaystyle 4:30. Before leaving he spends \displaystyle 3 hours and \displaystyle 15 minutes getting ready to leave. What time does he start to get ready to leave? 

 

 

Possible Answers:

\displaystyle 2:15

\displaystyle 1:45

\displaystyle 2:05

\displaystyle 1:15

\displaystyle 1:05

Correct answer:

\displaystyle 1:15

Explanation:

For this problem we are subtracting to find a previous time. 

We can subtract \displaystyle 3 hours from \displaystyle 4 and \displaystyle 15 minutes from \displaystyle 30

\displaystyle \frac{\begin{array}[b]{r}4\\ -\ 3\end{array}}{ \ \ \ \space1}   \displaystyle \frac{\begin{array}[b]{r}30\\ -\ 15\end{array}}{ \ \ \ \space 15}

He starts to get ready to leave at \displaystyle 1:15

Example Question #102 : Measurement And Estimation

Ben leaves for work at \displaystyle 7:16. Before leaving he spends \displaystyle 2 hours and \displaystyle 10 minutes getting ready to leave. What time does he start to get ready to leave? 

 

Possible Answers:

\displaystyle 5:06

\displaystyle 5:03

\displaystyle 9:00

\displaystyle 9:26

\displaystyle 9:06

Correct answer:

\displaystyle 5:06

Explanation:

For this problem we are subtracting to find a previous time. 

We can subtract \displaystyle 2 hours from \displaystyle 7 and \displaystyle 10 minutes from \displaystyle 16

\displaystyle \frac{\begin{array}[b]{r}7\\ -\ 2\end{array}}{ \ \ \ \space5}   \displaystyle \frac{\begin{array}[b]{r}16\\ -\ 10\end{array}}{ \ \ \ \ \ \space 6}

He starts to get ready to leave at \displaystyle 5:06

Example Question #103 : Measurement And Estimation

Tanner leaves for work at \displaystyle 7:25. Before leaving he spends \displaystyle 2 hours and \displaystyle 15 minutes getting ready to leave. What time does he start to get ready to leave? 

 

 

Possible Answers:

\displaystyle 5:10

\displaystyle 5:05

\displaystyle 6:10

\displaystyle 6:05

\displaystyle 9:05

Correct answer:

\displaystyle 5:10

Explanation:

For this problem we are subtracting to find a previous time. 

We can subtract \displaystyle 2 hours from \displaystyle 7 and \displaystyle 15 minutes from \displaystyle 25

\displaystyle \frac{\begin{array}[b]{r}7\\ -\ 2\end{array}}{ \ \ \ \space5}   \displaystyle \frac{\begin{array}[b]{r}25\\ -\ 15\end{array}}{ \ \ \ \space 10}

He starts to get ready to leave at \displaystyle 5:10

Example Question #104 : Measurement And Estimation

Will leaves for work at \displaystyle 7:50. Before leaving he spends \displaystyle 2 hours and \displaystyle 30 minutes getting ready to leave. What time does he start to get ready to leave? 

 

 

Possible Answers:

\displaystyle 5:25

\displaystyle 9:20

\displaystyle 9:25

\displaystyle 5:35

\displaystyle 5:20

Correct answer:

\displaystyle 5:20

Explanation:

For this problem we are subtracting to find a previous time. 

We can subtract \displaystyle 2 hours from \displaystyle 7 and \displaystyle 30 minutes from \displaystyle 50

\displaystyle \frac{\begin{array}[b]{r}7\\ -\ 2\end{array}}{ \ \ \ \space5}   \displaystyle \frac{\begin{array}[b]{r}50\\ -\ 30\end{array}}{ \ \ \ \space 20}

He starts to get ready to leave at \displaystyle 5:20

Example Question #101 : Measurement & Data

Jeff leaves for work at \displaystyle 7:05. Before leaving he spends \displaystyle 2 hours and \displaystyle 5 minutes getting ready to leave. What time does he start to get ready to leave? 

 

 

Possible Answers:

\displaystyle 9:10

\displaystyle 9:00

\displaystyle 5:00

\displaystyle 5:10

\displaystyle 9:20

Correct answer:

\displaystyle 5:00

Explanation:

For this problem we are subtracting to find a previous time. 

We can subtract \displaystyle 2 hours from \displaystyle 7 and \displaystyle 5 minutes from \displaystyle 5

\displaystyle \frac{\begin{array}[b]{r}7\\ -\ 2\end{array}}{ \ \ \ \space5}   \displaystyle \frac{\begin{array}[b]{r}5\\ -\ 5\end{array}}{ \ \ \ \ \space 0}

He starts to get ready to leave at \displaystyle 5:00

Example Question #1471 : Common Core Math: Grade 3

Scott leaves for work at \displaystyle 7:35. Before leaving he spends \displaystyle 2 hours and \displaystyle 20 minutes getting ready to leave. What time does he start to get ready to leave? 

 

 

Possible Answers:

\displaystyle 9:45

\displaystyle 5:15

\displaystyle 5:55

\displaystyle 9:15

\displaystyle 5:00

Correct answer:

\displaystyle 5:15

Explanation:

For this problem we are subtracting to find a previous time. 

We can subtract \displaystyle 2 hours from \displaystyle 7 and \displaystyle 20 minutes from \displaystyle 35

\displaystyle \frac{\begin{array}[b]{r}7\\ -\ 2\end{array}}{ \ \ \ \space5}   \displaystyle \frac{\begin{array}[b]{r}35\\ -\ 20\end{array}}{ \ \ \ \space 15}

He starts to get ready to leave at \displaystyle 5:15

Example Question #1471 : Common Core Math: Grade 3

Chuck leaves for work at \displaystyle 7:55. Before leaving he spends \displaystyle 2 hours and \displaystyle 42 minutes getting ready to leave. What time does he start to get ready to leave? 

 

Possible Answers:

\displaystyle 9:03

\displaystyle 5:50

\displaystyle 9:35

\displaystyle 5:23

\displaystyle 5:13

Correct answer:

\displaystyle 5:13

Explanation:

For this problem we are subtracting to find a previous time. 

We can subtract \displaystyle 2 hours from \displaystyle 7 and \displaystyle 42 minutes from \displaystyle 55

\displaystyle \frac{\begin{array}[b]{r}7\\ -\ 2\end{array}}{ \ \ \ \space5}   \displaystyle \frac{\begin{array}[b]{r}55\\ -\ 42\end{array}}{ \ \ \ \space 13}

He starts to get ready to leave at \displaystyle 5:13

Example Question #101 : Measurement And Estimation

When Matt got home from school he immediately started watching a television show. He watched the show for \displaystyle 2 hours and \displaystyle 50 minutes. If it is \displaystyle 8:58 when he stops watching the show, what time did he start watching the show? 

Possible Answers:

\displaystyle 6:08

\displaystyle 4:50

\displaystyle 4:19

\displaystyle 5:26

\displaystyle 5:50

Correct answer:

\displaystyle 6:08

Explanation:

For this problem we are subtracting to find a previous time. 

We can subtract \displaystyle 2 hours from \displaystyle 8 and \displaystyle 50 minutes from \displaystyle 58

\displaystyle \frac{\begin{array}[b]{r}8\\ -\ 2\end{array}}{ \ \ \ \space6}   \displaystyle \frac{\begin{array}[b]{r}58\\ -\ 50\end{array}}{ \ \ \ \space 8}

He started watching the television show at \displaystyle 6:08

Example Question #1 : Measure Volume And Solve One Step Word Problems Involving Volume: Ccss.Math.Content.3.Md.A.2

Megan is working on a science experiment. Using the scale below, how much water will she have if she adds \displaystyle 36 more grams of water? 


11 g

Possible Answers:

\displaystyle 37g

\displaystyle 35g

\displaystyle 47g

\displaystyle 42g

\displaystyle 50g

Correct answer:

\displaystyle 47g

Explanation:

Megan has \displaystyle 11g of water and when she adds \displaystyle 36g she will have \displaystyle 47g

\displaystyle 11g+36g=47g

Example Question #2 : Measure Volume And Solve One Step Word Problems Involving Volume: Ccss.Math.Content.3.Md.A.2

Megan is working on a science experiment. Using the scale below, how much water will she have if she adds \displaystyle 14 more grams of water? 


15 g

Possible Answers:

\displaystyle 27g

\displaystyle 31g

\displaystyle 32g

\displaystyle 36g

\displaystyle 29g

Correct answer:

\displaystyle 29g

Explanation:

Megan has \displaystyle 15g of water and when she adds \displaystyle 14g she will have \displaystyle 29g

\displaystyle 15g+14g=29g

Learning Tools by Varsity Tutors