Common Core: 1st Grade Math : Subtracting within 20

Study concepts, example questions & explanations for Common Core: 1st Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Subtracting Within 20

\(\displaystyle \frac{\begin{array}[b]{r}20\\ -\ 1\end{array}}{ \ \ \ \space?}\)

Possible Answers:

\(\displaystyle 19\)

\(\displaystyle 17\)

\(\displaystyle 16\)

\(\displaystyle 15\)

\(\displaystyle 18\)

Correct answer:

\(\displaystyle 19\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 20\) and count back \(\displaystyle 1.\)

\(\displaystyle 20,19\)

\(\displaystyle \frac{\begin{array}[b]{r}20\\ -\ 1\end{array}}{ \ \ \space19}\)

Example Question #2 : Subtracting Within 20

\(\displaystyle \frac{\begin{array}[b]{r}19\\ -\ 2\end{array}}{ \ \ \ \space?}\)

Possible Answers:

\(\displaystyle 20\)

\(\displaystyle 16\)

\(\displaystyle 17\)

\(\displaystyle 19\)

\(\displaystyle 18\)

Correct answer:

\(\displaystyle 17\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 19\) and count back \(\displaystyle 2.\)

\(\displaystyle 19,18,17\)

\(\displaystyle \frac{\begin{array}[b]{r}19\\ -\ 2\end{array}}{ \ \ \space17}\)

Example Question #3 : Subtracting Within 20

\(\displaystyle \frac{\begin{array}[b]{r}16\\ -\ 14\end{array}}{ \ \ \ \space?}\)

Possible Answers:

\(\displaystyle 5\)

\(\displaystyle 3\)

\(\displaystyle 2\)

\(\displaystyle 6\)

\(\displaystyle 4\)

Correct answer:

\(\displaystyle 2\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 16\) and count back \(\displaystyle 14.\)

\(\displaystyle 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2\)

\(\displaystyle \frac{\begin{array}[b]{r}16\\ -\ 14\end{array}}{ \ \ \ \ \ \space2}\)

Example Question #4 : Subtracting Within 20

\(\displaystyle \frac{\begin{array}[b]{r}13\\ -\ 6\end{array}}{ \ \ \ \space?}\)

Possible Answers:

\(\displaystyle 8\)

\(\displaystyle 9\)

\(\displaystyle 6\)

\(\displaystyle 5\)

\(\displaystyle 7\)

Correct answer:

\(\displaystyle 7\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 13\) and count back \(\displaystyle 6\).

\(\displaystyle 13, 12, 11, 10, 9, 8, 7\)

\(\displaystyle \frac{\begin{array}[b]{r}13\\ -\ 6\end{array}}{ \ \ \ \space7}\)

Example Question #2 : Subtracting Within 20

\(\displaystyle \frac{\begin{array}[b]{r}9\\ -\ 3\end{array}}{ \ \ \ \space?}\)

Possible Answers:

\(\displaystyle 7\)

\(\displaystyle 3\)

\(\displaystyle 4\)

\(\displaystyle 6\)

\(\displaystyle 5\)

Correct answer:

\(\displaystyle 6\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 9\) and count back \(\displaystyle 3\).

\(\displaystyle 9, 8, 7, 6\)

\(\displaystyle \frac{\begin{array}[b]{r}9\\ -\ 3\end{array}}{ \ \ \ \space6}\)

Example Question #3 : Subtracting Within 20

\(\displaystyle \frac{\begin{array}[b]{r}7\\ -\ 7\end{array}}{ \ \ \ \space?}\)

Possible Answers:

\(\displaystyle 0\)

\(\displaystyle 3\)

\(\displaystyle 4\)

\(\displaystyle 2\)

\(\displaystyle 1\)

Correct answer:

\(\displaystyle 0\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 7\) and count back \(\displaystyle 7\).

\(\displaystyle 7, 6, 5, 4, 3, 2, 1, 0\)

\(\displaystyle \frac{\begin{array}[b]{r}7\\ -\ 7\end{array}}{ \ \ \ \space0}\)

Example Question #521 : Operations

\(\displaystyle \frac{\begin{array}[b]{r}6\\ -\ 5\end{array}}{ \ \ \ \space?}\)

Possible Answers:

\(\displaystyle 1\)

\(\displaystyle 4\)

\(\displaystyle 2\)

\(\displaystyle 3\)

\(\displaystyle 0\)

Correct answer:

\(\displaystyle 1\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 6\) and count back \(\displaystyle 5\).

\(\displaystyle 6, 5, 4, 3, 2, 1\)

\(\displaystyle \frac{\begin{array}[b]{r}6\\ -\ 5\end{array}}{ \ \ \ \space1}\)

Example Question #3 : Subtracting Within 20

\(\displaystyle \frac{\begin{array}[b]{r}5\\ -\ 3\end{array}}{ \ \ \ \space?}\)

Possible Answers:

\(\displaystyle 0\)

\(\displaystyle 1\)

\(\displaystyle 2\)

\(\displaystyle 4\)

\(\displaystyle 3\)

Correct answer:

\(\displaystyle 2\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 5\) and count back \(\displaystyle 3\).

\(\displaystyle 5, 4, 3, 2\)

\(\displaystyle \frac{\begin{array}[b]{r}5\\ -\ 3\end{array}}{ \ \ \ \space2}\)

Example Question #9 : Subtracting Within 20

\(\displaystyle \frac{\begin{array}[b]{r}4\\ -\ 1\end{array}}{ \ \ \ \space?}\)

Possible Answers:

\(\displaystyle 3\)

\(\displaystyle 2\)

\(\displaystyle 1\)

\(\displaystyle 0\)

\(\displaystyle 4\)

Correct answer:

\(\displaystyle 3\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 4\) and count back \(\displaystyle 1.\)

\(\displaystyle 4, 3\)

\(\displaystyle \frac{\begin{array}[b]{r}4\\ -\ 1\end{array}}{ \ \ \ \space3}\)

Example Question #522 : Operations

\(\displaystyle \frac{\begin{array}[b]{r}7\\ -\ 2\end{array}}{ \ \ \ \space?}\)

Possible Answers:

\(\displaystyle 1\)

\(\displaystyle 5\)

\(\displaystyle 4\)

\(\displaystyle 3\)

\(\displaystyle 2\)

Correct answer:

\(\displaystyle 5\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 7\) and count back \(\displaystyle 2\).

\(\displaystyle 7, 6, 5\)

\(\displaystyle \frac{\begin{array}[b]{r}7\\ -\ 2\end{array}}{ \ \ \ \space5}\)

Learning Tools by Varsity Tutors