Common Core: 1st Grade Math : Number & Operations in Base Ten

Study concepts, example questions & explanations for Common Core: 1st Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #14 : Place Value And Properties Of Operations To Add And Subtract

\(\displaystyle \frac{\begin{array}[b]{r}30\\ +\ 10\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 80\)

\(\displaystyle 50\)

\(\displaystyle 70\)

\(\displaystyle 40\)

\(\displaystyle 60\)

Correct answer:

\(\displaystyle 40\)

Explanation:

When we add \(\displaystyle 10\) to a two digit number, the only number that changes in our answer is the tens position, and it will always go up by \(\displaystyle 1\). Mentally, we can add \(\displaystyle 1\) to the number in the tens place to find our answer. 

\(\displaystyle 3+1=4\)

\(\displaystyle \frac{\begin{array}[b]{r}20\\ +\ 10\end{array}}{ \ \ \ \space40}\)

Example Question #16 : Place Value And Properties Of Operations To Add And Subtract

\(\displaystyle \frac{\begin{array}[b]{r}35\\ +\ 10\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 45\)

\(\displaystyle 35\)

\(\displaystyle 40\)

\(\displaystyle 25\)

\(\displaystyle 30\)

Correct answer:

\(\displaystyle 45\)

Explanation:

When we add \(\displaystyle 10\) to a two digit number, the only number that changes in our answer is the tens position, and it will always go up by \(\displaystyle 1\). Mentally, we can add \(\displaystyle 1\) to the number in the tens place to find our answer. 

\(\displaystyle 3+1=4\)

\(\displaystyle \frac{\begin{array}[b]{r}35\\ +\ 10\end{array}}{ \ \ \ \space45}\)

Example Question #1091 : Common Core Math: Grade 1

\(\displaystyle \frac{\begin{array}[b]{r}40\\ +\ 10\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 70\)

\(\displaystyle 40\)

\(\displaystyle 60\)

\(\displaystyle 50\)

\(\displaystyle 30\)

Correct answer:

\(\displaystyle 50\)

Explanation:

When we add \(\displaystyle 10\) to a two digit number, the only number that changes in our answer is the tens position, and it will always go up by \(\displaystyle 1\). Mentally, we can add \(\displaystyle 1\) to the number in the tens place to find our answer. 

\(\displaystyle 4+1=5\)

\(\displaystyle \frac{\begin{array}[b]{r}40\\ +\ 10\end{array}}{ \ \ \ \space50}\)

Example Question #3 : Add And Subtract 10 To Two Digit Numbers: Ccss.Math.Content.1.Nbt.C.5

\(\displaystyle \frac{\begin{array}[b]{r}45\\ +\ 10\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 55\)

\(\displaystyle 50\)

\(\displaystyle 65\)

\(\displaystyle 45\)

\(\displaystyle 40\)

Correct answer:

\(\displaystyle 55\)

Explanation:

When we add \(\displaystyle 10\) to a two digit number, the only number that changes in our answer is the tens position, and it will always go up by \(\displaystyle 1\). Mentally, we can add \(\displaystyle 1\) to the number in the tens place to find our answer. 

\(\displaystyle 4+1=5\)

\(\displaystyle \frac{\begin{array}[b]{r}45\\ +\ 10\end{array}}{ \ \ \ \space55}\)

Example Question #4 : Add And Subtract 10 To Two Digit Numbers: Ccss.Math.Content.1.Nbt.C.5

\(\displaystyle \frac{\begin{array}[b]{r}50\\ +\ 10\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 30\)

\(\displaystyle 40\)

\(\displaystyle 60\)

\(\displaystyle 50\)

\(\displaystyle 20\)

Correct answer:

\(\displaystyle 60\)

Explanation:

When we add \(\displaystyle 10\) to a two digit number, the only number that changes in our answer is the tens position, and it will always go up by \(\displaystyle 1\). Mentally, we can add \(\displaystyle 1\) to the number in the tens place to find our answer. 

\(\displaystyle 5+1=6\)

\(\displaystyle \frac{\begin{array}[b]{r}50\\ +\ 10\end{array}}{ \ \ \ \space60}\)

Example Question #5 : Add And Subtract 10 To Two Digit Numbers: Ccss.Math.Content.1.Nbt.C.5

\(\displaystyle \frac{\begin{array}[b]{r}55\\ +\ 10\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 65\)

\(\displaystyle 55\)

\(\displaystyle 50\)

\(\displaystyle 60\)

\(\displaystyle 70\)

Correct answer:

\(\displaystyle 65\)

Explanation:

When we add \(\displaystyle 10\) to a two digit number, the only number that changes in our answer is the tens position, and it will always go up by \(\displaystyle 1\). Mentally, we can add \(\displaystyle 1\) to the number in the tens place to find our answer. 

\(\displaystyle 5+1=6\)

\(\displaystyle \frac{\begin{array}[b]{r}55\\ +\ 10\end{array}}{ \ \ \ \space65}\)

Example Question #21 : Place Value And Properties Of Operations To Add And Subtract

\(\displaystyle \frac{\begin{array}[b]{r}60\\ +\ 10\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 90\)

\(\displaystyle 70\)

\(\displaystyle 80\)

\(\displaystyle 75\)

\(\displaystyle 85\)

Correct answer:

\(\displaystyle 70\)

Explanation:

When we add \(\displaystyle 10\) to a two digit number, the only number that changes in our answer is the tens position, and it will always go up by \(\displaystyle 1\). Mentally, we can add \(\displaystyle 1\) to the number in the tens place to find our answer. 

\(\displaystyle 6+1=\)\(\displaystyle 7\)

\(\displaystyle \frac{\begin{array}[b]{r}60\\ +\ 10\end{array}}{ \ \ \ \space70}\)

Example Question #1092 : Common Core Math: Grade 1

\(\displaystyle \frac{\begin{array}[b]{r}65\\ +\ 10\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 65\)

\(\displaystyle 60\)

\(\displaystyle 55\)

\(\displaystyle 70\)

\(\displaystyle 75\)

Correct answer:

\(\displaystyle 75\)

Explanation:

When we add \(\displaystyle 10\) to a two digit number, the only number that changes in our answer is the tens position, and it will always go up by \(\displaystyle 1\). Mentally, we can add \(\displaystyle 1\) to the number in the tens place to find our answer. 

\(\displaystyle 6+1=\)\(\displaystyle 7\)

\(\displaystyle \frac{\begin{array}[b]{r}65\\ +\ 10\end{array}}{ \ \ \ \space75}\)

Example Question #23 : Place Value And Properties Of Operations To Add And Subtract

\(\displaystyle \frac{\begin{array}[b]{r}70\\ +\ 10\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 50\)

\(\displaystyle 80\)

\(\displaystyle 90\)

\(\displaystyle 60\)

\(\displaystyle 70\)

Correct answer:

\(\displaystyle 80\)

Explanation:

When we add \(\displaystyle 10\) to a two digit number, the only number that changes in our answer is the tens position, and it will always go up by \(\displaystyle 1\). Mentally, we can add \(\displaystyle 1\) to the number in the tens place to find our answer. 

\(\displaystyle 7+1=8\)

\(\displaystyle \frac{\begin{array}[b]{r}70\\ +\ 10\end{array}}{ \ \ \ \space80}\)

Example Question #1093 : Common Core Math: Grade 1

\(\displaystyle \frac{\begin{array}[b]{r}75\\ +\ 10\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 75\)

\(\displaystyle 80\)

\(\displaystyle 85\)

\(\displaystyle 90\)

\(\displaystyle 70\)

Correct answer:

\(\displaystyle 85\)

Explanation:

When we add \(\displaystyle 10\) to a two digit number, the only number that changes in our answer is the tens position, and it will always go up by \(\displaystyle 1\). Mentally, we can add \(\displaystyle 1\) to the number in the tens place to find our answer. 

\(\displaystyle 7+1=8\)

\(\displaystyle \frac{\begin{array}[b]{r}75\\ +\ 10\end{array}}{ \ \ \ \space85}\)

Learning Tools by Varsity Tutors