All Calculus 3 Resources
Example Questions
Example Question #21 : Cross Product
Determine the cross product , if and
The cross product of two vectors is a new vector. In order to find the cross product, it is useful to know the following relationships between the directional vectors:
Note how the sign changes when terms are reordered; order matters!
Scalar values (the numerical coefficients) multiply through, e.g:
With these principles in mind, we can calculate the cross product of our vectors and
Example Question #22 : Cross Product
Determine the cross product , if and .
The cross product of two vectors is a new vector. In order to find the cross product, it is useful to know the following relationships between the directional vectors:
Note how the sign changes when terms are reordered; order matters!
Scalar values (the numerical coefficients) multiply through, e.g:
With these principles in mind, we can calculate the cross product of our vectors and
Note that the zero answer means that these two vectors are parallel!
Example Question #23 : Cross Product
Determine the cross product , if and .
The cross product of two vectors is a new vector. In order to find the cross product, it is useful to know the following relationships between the directional vectors:
Note how the sign changes when terms are reordered; order matters!
Scalar values (the numerical coefficients) multiply through, e.g:
With these principles in mind, we can calculate the cross product of our vectors and
Example Question #24 : Cross Product
Determine the cross product , if and .
The cross product of two vectors is a new vector. In order to find the cross product, it is useful to know the following relationships between the directional vectors:
Note how the sign changes when terms are reordered; order matters!
Scalar values (the numerical coefficients) multiply through, e.g:
With these principles in mind, we can calculate the cross product of our vectors and
These zero results means that the two vectors are parallel.
Example Question #27 : Cross Product
Determine the cross product , if and .
The cross product of two vectors is a new vector. In order to find the cross product, it is useful to know the following relationships between the directional vectors:
Note how the sign changes when terms are reordered; order matters!
Scalar values (the numerical coefficients) multiply through, e.g:
With these principles in mind, we can calculate the cross product of our vectors and
Take note that if you were to find the magnitude of each vector (5 and 10) respectively and found their product, it'd be the same as the absolute value of the cross product. This equivalence indicates that the two vectors are perpendicular!
Example Question #25 : Cross Product
Determine the cross product , if and .
The cross product of two vectors is a new vector. In order to find the cross product, it is useful to know the following relationships between the directional vectors:
Note how the sign changes when terms are reordered; order matters!
Scalar values (the numerical coefficients) multiply through, e.g:
With these principles in mind, we can calculate the cross product of our vectors and
Example Question #31 : Cross Product
Determine the cross product , if and
The cross product of two vectors is a new vector. In order to find the cross product, it is useful to know the following relationships between the directional vectors:
Note how the sign changes when terms are reordered; order matters!
Scalar values (the numerical coefficients) multiply through, e.g:
With these principles in mind, we can calculate the cross product of our vectors and
Example Question #32 : Cross Product
Determine the cross product , if and .
The cross product of two vectors is a new vector. In order to find the cross product, it is useful to know the following relationships between the directional vectors:
Note how the sign changes when terms are reordered; order matters!
Scalar values (the numerical coefficients) multiply through, e.g:
With these principles in mind, we can calculate the cross product of our vectors and
Example Question #31 : Cross Product
Determine the cross product , if and .
The cross product of two vectors is a new vector. In order to find the cross product, it is useful to know the following relationships between the directional vectors:
Note how the sign changes when terms are reordered; order matters!
Scalar values (the numerical coefficients) multiply through, e.g:
With these principles in mind, we can calculate the cross product of our vectors and
Example Question #34 : Cross Product
Determine the cross product , if and .
The cross product of two vectors is a new vector. In order to find the cross product, it is useful to know the following relationships between the directional vectors:
Note how the sign changes when terms are reordered; order matters!
Scalar values (the numerical coefficients) multiply through, e.g:
With these principles in mind, we can calculate the cross product of our vectors and
Certified Tutor
Certified Tutor