Calculus 3 : Vector Addition

Study concepts, example questions & explanations for Calculus 3

varsity tutors app store varsity tutors android store

Example Questions

Example Question #61 : Vector Addition

Find the sum of the vectors \displaystyle \left \langle 2x,7y,z\right \rangle and \displaystyle \left \langle 4x,4y,2z\right \rangle

Possible Answers:

\displaystyle \left \langle 6x,10y,3z\right \rangle

\displaystyle \left \langle 6x,11y,4\right \rangle

\displaystyle \left \langle 6x,11y,3z\right \rangle

\displaystyle \left \langle 5x,11y,3z\right \rangle

Correct answer:

\displaystyle \left \langle 6x,11y,3z\right \rangle

Explanation:

To find the sum of two vectors \displaystyle a=\left \langle x_1,y_1,z_1\right \rangle and \displaystyle b=\left \langle x_2,y_2,z_2\right \rangle, we use the following formula:

\displaystyle a+b=\left \langle (x_1+x_2),(y_1+y_2),(z_1+z_2) \right \rangle

Applying to the vectors from the problem statement, we get

\displaystyle \left \langle (2x+4x),(7y+4y),(z+2z) \right \rangle=\left \langle 6x,11y,3z\right \rangle

Example Question #62 : Vector Addition

Find the sum of the vectors \displaystyle \left \langle x,8y,3z\right \rangle and \displaystyle \left \langle x,4y,5z\right \rangle

Possible Answers:

\displaystyle \left \langle 2x,10y,8z\right \rangle

\displaystyle \left \langle 2x,12y,8z\right \rangle

\displaystyle \left \langle 2x,2y,8z\right \rangle

\displaystyle \left \langle 2x,12y,9z\right \rangle

Correct answer:

\displaystyle \left \langle 2x,12y,8z\right \rangle

Explanation:

To find the sum of two vectors \displaystyle a=\left \langle x_1,y_1,z_1\right \rangle and \displaystyle b=\left \langle x_2,y_2,z_2\right \rangle, we use the following formula:

\displaystyle a+b=\left \langle (x_1+x_2),(y_1+y_2),(z_1+z_2) \right \rangle

Applying to the vectors from the problem statement, we get

\displaystyle \left \langle (x+x),(8y+4y),(3z+5z) \right \rangle=\left \langle 2x,12y,8z\right \rangle

Example Question #262 : Vectors And Vector Operations

Find the sum of the vectors \displaystyle \left \langle 2x,5y,z\right \rangle and \displaystyle \left \langle 10x,9y,4z\right \rangle

Possible Answers:

\displaystyle \left \langle 11x,14y,5z\right \rangle

\displaystyle \left \langle 12x,14y,5z\right \rangle

\displaystyle \left \langle 12x,10y,6z\right \rangle

\displaystyle \left \langle 2x,11y,8z\right \rangle

Correct answer:

\displaystyle \left \langle 12x,14y,5z\right \rangle

Explanation:

To find the sum of two vectors \displaystyle a=\left \langle a_1,a_2,a_3\right \rangle and \displaystyle b=\left \langle b_1,b_2,b_3\right \rangle we use the formula:

\displaystyle a+b=\left \langle a_1+b_1,a_2+b_2,a_3+b_3\right \rangle

Using the vectors from the problem statement, we get

 

\displaystyle \left \langle 2x+10x,5y+9y,z+4z\right \rangle=\left \langle 12x,14y,5z\right \rangle

Example Question #61 : Vector Addition

Find the sum of the vectors \displaystyle \left \langle 3,5,9\right \rangle and \displaystyle \left \langle 2,0,1\right \rangle

Possible Answers:

\displaystyle \left \langle 0,5,10\right \rangle

\displaystyle \left \langle 6,5,12\right \rangle

\displaystyle \left \langle 5,5,10\right \rangle

\displaystyle \left \langle 4,5,11\right \rangle

Correct answer:

\displaystyle \left \langle 5,5,10\right \rangle

Explanation:

To find the sum of two vectors \displaystyle a=\left \langle a_1,a_2,a_3\right \rangle and \displaystyle b=\left \langle b_1,b_2,b_3\right \rangle we use the formula:

\displaystyle a+b=\left \langle a_1+b_1,a_2+b_2,a_3+b_3\right \rangle

Using the vectors from the problem statement, we get

 

\displaystyle \left \langle3+2,5+0,9+1\right \rangle=\left \langle 5,5,10\right \rangle

Example Question #271 : Vectors And Vector Operations

Find the sum of the vectors \displaystyle \left \langle 3,-1,-5\right \rangle and \displaystyle \left \langle -7,6,3\right \rangle

Possible Answers:

\displaystyle \left \langle -4,-5,-2\right \rangle

\displaystyle \left \langle -4,-5,-7\right \rangle

\displaystyle \left \langle -4,3,-2\right \rangle

\displaystyle \left \langle -4,5,-2\right \rangle

Correct answer:

\displaystyle \left \langle -4,-5,-2\right \rangle

Explanation:

To find the sum between two vectors \displaystyle a=\left \langle a_1,a_2,a_3\right \rangle and \displaystyle b=\left \langle b_1,b_2,b_3\right \rangle, we use the formula:

\displaystyle a+b=\left \langle a_1+b_1,a_2+b_2,a_3+b_3\right \rangle

Using the vectors from the problem statement, we get

\displaystyle \left \langle 3-7,-1+6,-5+3\right \rangle=\left \langle -4,-5,-2\right \rangle

 

Example Question #62 : Vector Addition

Find the sum of the vectors \displaystyle \left \langle 3,-5,7\right \rangle and \displaystyle \left \langle -2,1,3\right \rangle

Possible Answers:

\displaystyle \left \langle 1,-4,9\right \rangle

\displaystyle \left \langle 1,-4,10\right \rangle

\displaystyle \left \langle 1,-3,10\right \rangle

\displaystyle \left \langle 2,-4,10\right \rangle

Correct answer:

\displaystyle \left \langle 1,-4,10\right \rangle

Explanation:

To find the sum between two vectors \displaystyle a=\left \langle a_1,a_2,a_3\right \rangle and \displaystyle b=\left \langle b_1,b_2,b_3\right \rangle, we use the formula:

\displaystyle a+b=\left \langle a_1+b_1,a_2+b_2,a_3+b_3\right \rangle

Using the vectors from the problem statement, we get

\displaystyle \left \langle 3-2,-5+1,7+3\right \rangle=\left \langle 1,-4,10\right \rangle

Example Question #63 : Vector Addition

Find the sum of the vectors \displaystyle \left \langle 6,8,2\right \rangle and \displaystyle \left \langle 4,10,13\right \rangle

Possible Answers:

\displaystyle \left \langle 11,18,15\right \rangle

\displaystyle \left \langle 10,18,14\right \rangle

\displaystyle \left \langle 10,16,15\right \rangle

\displaystyle \left \langle 10,18,15\right \rangle

Correct answer:

\displaystyle \left \langle 10,18,15\right \rangle

Explanation:

To find the sum between two vectors \displaystyle a=\left \langle a_1,a_2,a_3\right \rangle and \displaystyle b=\left \langle b_1,b_2,b_3\right \rangle, we use the formula:

\displaystyle a+b=\left \langle a_1+b_1,a_2+b_2,a_3+b_3\right \rangle

Using the vectors from the problem statement, we get

\displaystyle \left \langle 6+4,8+10,2+13\right \rangle=\left \langle 10,18,15\right \rangle

Example Question #2271 : Calculus 3

Find the sum of the vectors \displaystyle \left \langle 3,2y,12\right \rangle and \displaystyle \left \langle 7,5y,6\right \rangle

Possible Answers:

\displaystyle \left \langle 10,8y,16\right \rangle

\displaystyle \left \langle 11,8,18\right \rangle

\displaystyle \left \langle 10,7y,18\right \rangle

\displaystyle \left \langle 9,8y,18\right \rangle

Correct answer:

\displaystyle \left \langle 10,7y,18\right \rangle

Explanation:

To find the sum of two vectors \displaystyle a=\left \langle a_1,a_2,a_3\right \rangle and \displaystyle b=\left \langle b_1,b_2,b_3\right \rangle, we use the formula 

\displaystyle a+b=\left \langle a_1+b_1,a_2+b_2,a_3+b_3\right \rangle

Using the vectors from the problem statement, we get

\displaystyle \left \langle 3+7,2y+5y,12+6\right \rangle=\left \langle 10,7y,18\right \rangle

 

Example Question #276 : Vectors And Vector Operations

Find the sum of the vectors \displaystyle \left \langle 5,0,3\right \rangle and \displaystyle \left \langle 1,-1,3\right \rangle

Possible Answers:

\displaystyle \left \langle 6,-1,-6\right \rangle

\displaystyle \left \langle 4,-1,-5\right \rangle

\displaystyle \left \langle 5,-1,-6\right \rangle

\displaystyle \left \langle 6,1,-6\right \rangle

Correct answer:

\displaystyle \left \langle 6,-1,-6\right \rangle

Explanation:

To find the sum of two vectors \displaystyle a=\left \langle a_1,a_2,a_3\right \rangle and \displaystyle b=\left \langle b_1,b_2,b_3\right \rangle, we use the formula 

\displaystyle a+b=\left \langle a_1+b_1,a_2+b_2,a_3+b_3\right \rangle

Using the vectors from the problem statement, we get

\displaystyle \left \langle 5+1,0-1,3+3\right \rangle=\left \langle 6,-1,6\right \rangle

Example Question #272 : Vectors And Vector Operations

Solve:

\displaystyle \left \langle 3+x, 5, x+1 \right\rangle + \left \langle x^2, 2, 5\right \rangle

Possible Answers:

\displaystyle \left \langle 3x^2+x^3, 10, 5x+5\right \rangle

\displaystyle x^2+2x+16

\displaystyle \left \langle x^2+x+3, 6, x+6\right \rangle

\displaystyle \left \langle x^2+x+3, 7, x+6\right \rangle

Correct answer:

\displaystyle \left \langle x^2+x+3, 7, x+6\right \rangle

Explanation:

To add two vectors together, we simply add the corresponding components (for example, \displaystyle \left \langle a, b\right \rangle+ \left \langle c, d\right \rangle= \left \langle a+c, b+d\right \rangle)

Our final answer is 

\displaystyle \left \langle x^2+x+3, 7, x+6\right \rangle

Learning Tools by Varsity Tutors