Calculus 3 : Vector Addition

Study concepts, example questions & explanations for Calculus 3

varsity tutors app store varsity tutors android store

Example Questions

Example Question #211 : Vectors And Vector Operations

Given the vectors 

\displaystyle \small \small \small v=\left(\frac{1}{2},\frac{3}{4}\right)

\displaystyle \small \small w=\left(\frac{5}{2},\frac{5}{4}\right)

find the sum \displaystyle \small v+w.

Possible Answers:

\displaystyle \small \small \small v+w=(0,2)

\displaystyle \small \small v+w=(3,2)

\displaystyle \small \small \small v+w=(-2,2)

\displaystyle \small \small \small v+w=(2,3)

Correct answer:

\displaystyle \small \small v+w=(3,2)

Explanation:

Given the vectors 

\displaystyle \small \small \small v=\left(\frac{1}{2},\frac{3}{4}\right)

\displaystyle \small \small w=\left(\frac{5}{2},\frac{5}{4}\right)

we can find the sum \displaystyle \small v+w by adding component by component:

\displaystyle \small \small \small v+w=(1/2,3/4)+(5/2,5/4)=(1/2+5/2,3/4+5/4)

\displaystyle =(6/2,8/4)=(3,2)

Example Question #212 : Vectors And Vector Operations

Given the vectors 

\displaystyle \small \small \small \small v=\left(\frac{1}{2},2\right)

\displaystyle \small \small \small \small w=\left(\frac{1}{4},-5\right)

find the sum \displaystyle \small v+w.

Possible Answers:

\displaystyle \small \small \small v+w=(5/8,-3)

\displaystyle \small \small v+w=(3/4,-3)

\displaystyle \small \small \small v+w=(3/4,3)

\displaystyle \small \small \small v+w=(3/4,2)

Correct answer:

\displaystyle \small \small v+w=(3/4,-3)

Explanation:

Given the vectors 

\displaystyle \small \small \small \small v=\left(\frac{1}{2},2\right)

\displaystyle \small \small \small \small w=\left(\frac{1}{4},-5\right)

we can find the sum \displaystyle \small v+w by adding component by component:

\displaystyle \small \small \small \small \small v+w=(1/2,2)+(1/4,-5)=(1/2+1/4,2-5)

\displaystyle \small =(3/4,-3)

Example Question #211 : Vectors And Vector Operations

Given the vectors 

\displaystyle \small \small \small \small \small \small v=(-1,2,\pi^2)

\displaystyle \small \small \small \small \small \small \small w=(1,-2,\pi)

find the sum \displaystyle \small v+w.

Possible Answers:

\displaystyle \small \small \small \small \small \small \small \small v+w=(0,0,\pi(1-\pi))

\displaystyle \small \small \small \small \small \small v+w=(0,0,\pi(\pi+1))

\displaystyle \small \small \small \small \small \small \small v+w=(0,0,\pi(\pi-1))

\displaystyle \small \small \small \small \small \small \small v+w=(-2,-4,\pi(\pi-1))

Correct answer:

\displaystyle \small \small \small \small \small \small v+w=(0,0,\pi(\pi+1))

Explanation:

Given the vectors 

\displaystyle \small \small \small \small \small \small v=(-1,2,\pi^2)

\displaystyle \small \small \small \small \small \small \small w=(1,-2,\pi)

we can find the sum \displaystyle \small v+w by adding component by component:

\displaystyle \small \small \small \small \small \small \small \small v+w=(-1,2,\pi^2)+(1,-2,\pi)=(-1+1,2-2,\pi^2+\pi)

\displaystyle \small \small \small \small \small =(0,0,\pi(\pi+1))

Example Question #221 : Vectors And Vector Operations

Given the vectors 

\displaystyle \small \small \small \small \small \small \small v=(\ln 2,1/2,e^2)

\displaystyle \small \small \small \small \small \small \small \small w=(e,-1/4,e^4)

find the sum \displaystyle \small v+w.

Possible Answers:

\displaystyle \small \small \small \small \small v+w=(\ln 2-e,3/4,e^2-e^4)

\displaystyle \small \small \small \small \small v+w=(1/4,e^2+e^4,\ln 2+e)

\displaystyle \small \small \small \small v+w=(\ln 2+e,1/4,e^2+e^4)

\displaystyle \small \small \small \small \small v+w=(e^2,1/4,e^2-e^4)

Correct answer:

\displaystyle \small \small \small \small v+w=(\ln 2+e,1/4,e^2+e^4)

Explanation:

Given the vectors 

\displaystyle \small \small \small \small \small \small \small v=(\ln 2,1/2,e^2)

\displaystyle \small \small \small \small \small \small \small \small w=(e,-1/4,e^4)

we can find the sum \displaystyle \small v+w by adding component by component:

\displaystyle \small \small \small \small v+w=(\ln 2,1/2,e^2)+(e,-1/4,e^4)=(\ln2+e,1/2-1/4,e^2+e^4)

\displaystyle \small \small \small =(\ln 2+e,1/4,e^2+e^4)

Example Question #2221 : Calculus 3

Given the vectors 

\displaystyle \small \small \small \small \small \small \small \small v=(1,-1,-2)

\displaystyle \small \small \small \small \small \small \small \small \small w=(0,-1,5)

find the sum \displaystyle \small v+w.

Possible Answers:

\displaystyle \small \small \small \small v+w=(-1,2,3)

\displaystyle \small \small \small \small \small v+w=(2,-1,3)

\displaystyle \small \small \small \small \small v+w=(1,2,-3)

\displaystyle \small \small \small \small v+w=(1,-2,3)

Correct answer:

\displaystyle \small \small \small \small v+w=(1,-2,3)

Explanation:

Given the vectors 

\displaystyle \small \small \small \small \small \small \small \small v=(1,-1,-2)

\displaystyle \small \small \small \small \small \small \small \small \small w=(0,-1,5)

we can find the sum \displaystyle \small v+w by adding component by component:

\displaystyle \small \small \small \small \small v+w=(1,-1,-2)+(0,-1,5)=(1+0,-1-1,-2+5)

\displaystyle \small \small \small \small =(1,-2,3)

Example Question #221 : Vectors And Vector Operations

Given the vectors 

\displaystyle \small \small \small v=(5,5)

\displaystyle \small \small \small \small \small \small \small \small \small \small w=(4,2)

find the sum \displaystyle \small v+w.

Possible Answers:

\displaystyle \small \small \small \small \small v+w=(9,7)

\displaystyle \small \small \small \small \small v+w=(-9,7)

\displaystyle \small \small \small \small \small v+w=(9/2,7)

\displaystyle \small \small \small \small \small \small v+w=(7,9)

Correct answer:

\displaystyle \small \small \small \small \small v+w=(9,7)

Explanation:

Given the vectors 

\displaystyle \small \small \small v=(5,5)

\displaystyle \small \small \small \small \small \small \small \small \small \small w=(4,2)

we can find the sum \displaystyle \small v+w by adding component by component:

\displaystyle \small \small \small \small \small \small v+w=(5,5)+(4,2)=(5+4,5+2)

\displaystyle \small \small \small \small \small =(9,7)

Example Question #14 : Vector Addition

Given the vectors 

\displaystyle \small \small \small v=(-1,-5)

\displaystyle \small \small \small w=(1,3)

find the sum \displaystyle \small v+w.

Possible Answers:

\displaystyle \small \small \small \small \small v+w=(0,-2)

\displaystyle \small \small \small \small \small v+w=(-2,2)

\displaystyle \small \small \small \small \small \small v+w=(5,1)

\displaystyle \small \small \small \small \small \small v+w=(-2,0)

Correct answer:

\displaystyle \small \small \small \small \small v+w=(0,-2)

Explanation:

Given the vectors 

\displaystyle \small \small \small v=(-1,-5)

\displaystyle \small \small \small w=(1,3)

we can find the sum \displaystyle \small v+w by adding component by component:

\displaystyle \small \small \small \small \small \small \small v+w=(-1,-5)+(1,3)=(-1+1,-5+3)

\displaystyle \small \small \small \small \small =(0,-2)

Example Question #222 : Vectors And Vector Operations

Given the vectors 

\displaystyle \small \small \small \small \small v=(0,1,\pi)

\displaystyle \small \small \small \small \small \small w=(0,\sqrt{2},3)

find the sum \displaystyle \small v+w

Possible Answers:

\displaystyle \small \small \small \small \small v+w=(0,\pi+3,1+\sqrt{2})

\displaystyle \small \small \small \small \small \small v+w=(0,\sqrt{2}+\pi,4)

\displaystyle \small \small \small \small \small \small v+w=(0,3+\sqrt{2},\pi+1)

\displaystyle \small \small \small \small v+w=(0,1+\sqrt{2},\pi+3)

Correct answer:

\displaystyle \small \small \small \small v+w=(0,1+\sqrt{2},\pi+3)

Explanation:

Given the vectors 

\displaystyle \small \small \small \small \small v=(0,1,\pi)

\displaystyle \small \small \small \small \small \small w=(0,\sqrt{2},3)

we can find the sum \displaystyle \small v+w by adding component by component:

\displaystyle \small \small \small \small \small \small v+w=(0,1,\pi)+(0,\sqrt{2},3)=(0+0,1+\sqrt{2},\pi+3)

\displaystyle \small \small \small \small =(0,1+\sqrt{2},\pi+3)

Example Question #11 : Vector Addition

Given the vectors 

\displaystyle \small \small \small v=(2,3)

\displaystyle \small \small \small w=(4,7)

find the sum \displaystyle \small v+w.

Possible Answers:

\displaystyle \small \small \small \small \small \small v+w=(10,6)

\displaystyle \small \small \small \small \small \small v+w=(6,-10)

\displaystyle \small \small \small \small \small \small v+w=(-6,10)

\displaystyle \small \small \small \small \small v+w=(6,10)

Correct answer:

\displaystyle \small \small \small \small \small v+w=(6,10)

Explanation:

Given the vectors 

\displaystyle \small \small \small v=(2,3)

\displaystyle \small \small \small w=(4,7)

we can find the sum \displaystyle \small v+w by adding component by component:

\displaystyle \small \small \small \small \small \small \small \small v+w=(2,3)+(4,7)=(2+4,3+7)

\displaystyle \small \small \small \small \small =(6,10)

Example Question #17 : Vector Addition

Given the vectors 

\displaystyle \small \small \small \small v=(1/2,4/5)

\displaystyle \small \small \small \small w=(5/8,2/5)

find the sum \displaystyle \small v+w.

Possible Answers:

\displaystyle \small \small \small \small \small \small \small \small v+w=(9/4,6/5)

\displaystyle \small \small \small \small \small \small \small \small v+w=(6/5,9/8)

\displaystyle \small \small \small \small \small \small \small v+w=(9/8,6/5)

\displaystyle \small \small \small \small \small \small \small \small v+w=(1/2,6/5)

Correct answer:

\displaystyle \small \small \small \small \small \small \small v+w=(9/8,6/5)

Explanation:

Given the vectors 

\displaystyle \small \small \small \small v=(1/2,4/5)

\displaystyle \small \small \small \small w=(5/8,2/5)

we can find the sum \displaystyle \small v+w by adding component by component:

\displaystyle \small \small \small \small \small \small \small \small \small v+w=(1/2,4/5)+(5/8,2/5)=(1/2+5/8,4/5+2/5)

\displaystyle \small \small \small \small \small \small =(9/8,6/5)

Learning Tools by Varsity Tutors