Calculus 3 : Calculus 3

Study concepts, example questions & explanations for Calculus 3

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Line Integrals

Write the parametric equations of the line that passes through the points  and .

Possible Answers:

Correct answer:

Explanation:

First, you must find the vector that is parallel to the line.

This vector is 

.

From the points we were given, this becomes 

.

To form the parametric equations, we need to pick a point that lies on the line we want.

The point  is used.

The vector form of the line is from the following equation 

.

We then rewrite each expression in terms of the variables x, y, and z. 

Example Question #2 : Line Integrals

Evaluate the line integral of the function 

 over the line segment  from  to 

 

Possible Answers:

Correct answer:

Explanation:

Evaluate the line integral using the function 

 over the line segment  from  to 

 

Define the Parametric Equations to Represent 

The points given lie on the line . Define the parameter , then  can be written . Therefore, the parametric equations for  are: 

 

_________________________________________________________________

 The line integral of a function  along the curve  with the parametric equation  and  with  is defined by: 

 

                                  (1)

 

Where  is the vector derivative of the vector , therefore  is simply the magnitude of the vector derivative. 

______________________________________________________________

Write the vector :

 

Differentiate, 

 

The absolute value (magnitude) of this vector is: 

 

Write the function  in terms of the parameter 

Insert everything into Equation (1) noting that the limits of integration will be  due to the fact that the parameter  varies from  to  over the line segment we are integrating over. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example Question #1 : Arc Length And Curvature

Determine the length of the curve , on the interval 

Possible Answers:

Correct answer:

Explanation:

First we need to find the tangent vector, and find its magnitude.

 

Now we can set up our arc length integral

 

 

Example Question #61 : 3 Dimensional Space

Determine the length of the curve , on the interval 

Possible Answers:

Correct answer:

Explanation:

First we need to find the tangent vector, and find its magnitude.

 

Now we can set up our arc length integral

 

 

Example Question #71 : 3 Dimensional Space

Find the length of the curve , from , to 

Possible Answers:

None of the other answers

Correct answer:

Explanation:

The formula for the length of a parametric curve in 3-dimensional space is 

Taking dervatives and substituting, we have 

. Factor a  out of the square root.

. "Uncancel" an  next to the . Now there is a perfect square inside the square root.

. Factor

. Take the square root, and integrate.

 

Example Question #3 : Arc Length And Curvature

Find the length of the arc drawn out by the vector function  with  from to .

Possible Answers:

None of the other answers

Correct answer:

Explanation:

To find the arc length of a function, we use the formula

 

.

Using we have

Example Question #72 : 3 Dimensional Space

Evaluate the curvature of the function  at the point .

Possible Answers:

Correct answer:

Explanation:

The formula for curvature of a Cartesian equation is . (It's not the easiest to remember, but it's the most convenient form for Cartesian equations.)

We have , hence

and .

Example Question #1 : Arc Length And Curvature

Find the length of the parametric curve

for .

Possible Answers:

Correct answer:

Explanation:

To find the solution, we need to evaluate

.

First, we find 

, which leads to 

.

So we have a final expression to integrate for our answer

 

Example Question #7 : Arc Length And Curvature

Determine the length of the curve given below on the interval 0<t<2

Possible Answers:

Correct answer:

Explanation:

The length of a curve r is given by:

To solve:

Example Question #8 : Arc Length And Curvature

Find the arc length of the curve 

on the interval 

 

 

Possible Answers:

Correct answer:

Explanation:

To find the arc length of the curve function

on the interval

we follow the formula

For the curve function in this problem we have

and following the arc length formula we solve for the integral

Hence the arc length is 

Learning Tools by Varsity Tutors