Calculus 2 : Convergence and Divergence

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #11 : Ratio Test

Let the series \(\displaystyle \sum_{n=1}^{\infty}a_{n}\) with \(\displaystyle a_{n}=\frac{(-1)^{n+1}}{n}\) determine whether the series is convergent or divergent using the ratio test.

Possible Answers:

The series is divergent.

We cant use the ratio test for this type of series.

The series is convergent.

We can't conclude when using the ratio test.

\(\displaystyle \frac{-1}{ln2}\)

Correct answer:

We can't conclude when using the ratio test.

Explanation:

Note that the series is alternating. To be able to use the ratio test, we will have to compute the ratio:

\(\displaystyle \left|\frac{a_{n+1}}{a_n}\ \right|=\frac{(-1)^{n+2}}{n+1}\cdot \frac{n}{(-1)^{n+1}}=\frac{n}{n+1}\)

Now we need to see that :

\(\displaystyle \lim_{n\rightarrow \infty }\left|\frac{a_{n+1}}{a_n}\ \right|=\lim_{n\rightarrow \infty}\frac{n}{n+1}=1\).

Since \(\displaystyle \lim_{n\rightarrow \infty }\left|\frac{a_{n+1}}{a_n}\ \right|=1\) we can't conclude by using the ratio test. We will have to call upon another test to show that the series is convergent.

 

Example Question #41 : Series In Calculus

Determine if the statement is true or false.

Assume that the series has positive terms. Furthermore suppose that

\(\displaystyle \lim _{n\rightarrow \infty}\frac{a_{n+1}}{a_n}=1\), then all the series of the form \(\displaystyle \sum_{n=1}^{\infty}a_n\)are divergent.

Possible Answers:

We can't conclude in general.

The statement above is false.

The series is convergent if it is positive.

The series is divergent.

There is only one series that satisfies that.

Correct answer:

The statement above is false.

Explanation:

To show that the statement above is false, we will consider the following example.

consider the series \(\displaystyle \sum_{n=1}^{\infty}a_{n}\) where \(\displaystyle a_{n}\) is given by:

\(\displaystyle a_{n}=\frac{1}{n(n+1)}\) clearly the series has positive terms. Furthermore, we have

\(\displaystyle \lim_{n\rightarrow \infty}\frac{a_{n+1}}{a_n}=\frac{1}{(n+1)(n+2)}{\cdot \frac{n(n+1)}{1}}=\frac{n}{n+2}=1\), meaning the series can be either convergent or divergent.

However, the series :\(\displaystyle \sum_{n=1}^{\infty}a_{n}\) is convergent (use for example the integral test to see that it is convergent).

Therefore, the original statement is false.

Example Question #41 : Series In Calculus

We consider the series,

\(\displaystyle \sum_{n=1}^{\infty}\frac{a^n}{n^b},0< a< \frac{1}{999} ,b>0\).

 Using the ratio test, what can we conclude about the nature of convergence of this series?

Possible Answers:

The series is divergent.

We will need to know the values of \(\displaystyle b\) to decide.

The series converges to \(\displaystyle \frac{a}{b}\).

We can't use the ratio test here.

The series is convergent.

Correct answer:

The series is convergent.

Explanation:

Note that the series is positive.

As it is required we will use the ratio test to check for the nature of the series. 

We have \(\displaystyle \frac{a_{n+1}}{a_n}=\frac{a^{n+1}}{(n+1)^b}\frac{n^b}{a^n}=a\left(\frac{n}{n+1}\right)^b\).

 

Therefore, \(\displaystyle \lim_{n\rightarrow\infty}\frac{a_{n+1}}{a_n}=\lim_{n\rightarrow\infty} a(\frac{n}{n+1})b\)\(\displaystyle \lim_{n\rightarrow\infty}\frac{n^b}{(n+1)^b}=a(\lim_{n\rightarrow}\frac{n}{n+1})^b=a\)

 

\(\displaystyle L=\lim_{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_n}\right|\) if L>1 the series diverges, if L<1 the series converges absolutely, and if L=1 the series may either converge or diverge.

Since \(\displaystyle a< \frac{1}{999}< 1\) the ratio test concludes that the series converges absolutely.

 

 

Example Question #13 : Ratio Test

Use the ratio test to find out if the following series is convergent:

\(\displaystyle \sum_{n = 1}^{\infty} \frac{6}{5^n}\)

Note: \(\displaystyle f(n) = \frac{6}{5^n}\)

Possible Answers:

\(\displaystyle Convergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 0.2\)

\(\displaystyle Divergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 10\)

\(\displaystyle Inconclusive: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 1\)

\(\displaystyle Convergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 0\)

\(\displaystyle Divergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} \rightarrow \infty\)

Correct answer:

\(\displaystyle Convergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 0.2\)

Explanation:

Determine the convergence of the series based on the limits.

\(\displaystyle \newline Convergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} < 1 \newline Divergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} > 1 \newline Inconclusive: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 1\)

Solution:

1. Ignore constants and simplify the equation (canceling out what you can).

2. Once the equation is simplified, take \(\displaystyle \lim_{n\rightarrow \infty}\).

\(\displaystyle \frac{\frac{1}{5^{n+1}}}{\frac{1}{5^n}}\)\(\displaystyle = \frac{5^n}{5^{n+1}}=0.2\)

\(\displaystyle \lim_{n\rightarrow \infty} 0.2 \rightarrow 0.2\)

Example Question #14 : Ratio Test

Use the ratio test to find out if the following series is convergent:

\(\displaystyle \sum_{n = 1}^{\infty} \frac{10}{2^n}\)

Note: \(\displaystyle f(n) = \frac{10}{2^n}\)

Possible Answers:

\(\displaystyle Divergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 10\)

\(\displaystyle Convergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 0\)

\(\displaystyle Inconclusive: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 1\)

\(\displaystyle Divergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} \rightarrow \infty\)

\(\displaystyle Convergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 0.5\)

Correct answer:

\(\displaystyle Convergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 0.5\)

Explanation:

Determine the convergence of the series based on the limits.

\(\displaystyle \newline Convergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} < 1 \newline Divergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} > 1 \newline Inconclusive: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 1\)

Solution:

1. Ignore constants and simplify the equation (canceling out what you can).

2. Once the equation is simplified, take \(\displaystyle \lim_{n\rightarrow \infty}\)

\(\displaystyle \frac{\frac{1}{2^{n+1}}}{\frac{1}{2^n}}\)\(\displaystyle = \frac{2^n}{2^{n+1}}=0.5\)

\(\displaystyle = \lim_{n\rightarrow \infty} 0.5 \rightarrow 0.5\)

Example Question #11 : Ratio Test

Use the ratio test to find out if the following series is convergent:

\(\displaystyle \sum_{n = 1}^{\infty} \frac{e^n}{3^n}\)

Note: \(\displaystyle f(n) = \frac{e^n}{3^n}\)

Possible Answers:

\(\displaystyle Inconclusive: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 1\)

\(\displaystyle Convergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} =\) \(\displaystyle \frac{e}{3}\)

\(\displaystyle Divergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = e\)

\(\displaystyle Convergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 0\)

\(\displaystyle Divergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} \rightarrow \infty\)

Correct answer:

\(\displaystyle Convergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} =\) \(\displaystyle \frac{e}{3}\)

Explanation:

Determine the convergence of the series based on the limits.

\(\displaystyle \newline Convergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} < 1 \newline Divergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} > 1 \newline Inconclusive: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 1\)

Solution:

1. Ignore constants and simplify the equation (canceling out what you can).

2. Once the equation is simplified, take \(\displaystyle \lim_{n\rightarrow \infty}\).

 

\(\displaystyle \frac{\frac{e^{n+1}}{3^{n+1}}}{\frac{e^n}{3^n}}\)\(\displaystyle = \frac{\frac{e^{n+1}}{e^n}}{\frac{3^{n+1}}{3^(n)}}\) \(\displaystyle = \frac{e}^{3}\) 

\(\displaystyle \lim_{n\rightarrow \infty} \frac{e}{3} \rightarrow \frac{e}{3}\)

Example Question #51 : Series In Calculus

Use the ratio test to find out if the following series is convergent:

\(\displaystyle \sum_{n = 1}^{\infty} \frac{3^n}{2^n}\)

Note: \(\displaystyle f(n) = \frac{3^n}{2^n}\)

Possible Answers:

\(\displaystyle Convergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 0\)

\(\displaystyle Convergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 0.5\)

\(\displaystyle Divergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} \rightarrow \infty\)

\(\displaystyle Inconclusive: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 1\)

\(\displaystyle Divergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 1.5\)

Correct answer:

\(\displaystyle Divergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 1.5\)

Explanation:

Determine the convergence of the series based on the limits.

\(\displaystyle \newline Convergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} < 1 \newline Divergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} > 1 \newline Inconclusive: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 1\)

Solution:

1. Ignore constants and simplify the equation (canceling out what you can).

2. Once the equation is simplified, take \(\displaystyle \lim_{n\rightarrow \infty}\).

\(\displaystyle \frac{\frac{3^{n+1}}{2^{n+1}}}{\frac{3^n}{2^n}}\) \(\displaystyle = \frac{\frac{3^{n+1}}{3^n}}{\frac{2^{n+1}}{2^n}}=\frac{3}{2}\)

\(\displaystyle \frac{3}{2}= 1.5\)

\(\displaystyle =\lim_{n\rightarrow \infty} 1.5 \rightarrow 1.5\)

Example Question #11 : Convergence And Divergence

Use the ratio test to find out if the following series is convergent:

\(\displaystyle \sum_{n = 1}^{\infty} \frac{e^n}{5^n}\)

Note: \(\displaystyle f(n) = \frac{e^n}{5^n}\)

Possible Answers:

\(\displaystyle Divergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = \frac{5}{e}\)

\(\displaystyle Convergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 0\)

\(\displaystyle Divergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} \rightarrow \infty\)

\(\displaystyle Convergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = \frac{e}{5}\)

\(\displaystyle Inconclusive: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 1\)

Correct answer:

\(\displaystyle Convergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = \frac{e}{5}\)

Explanation:

Determine the convergence of the series based on the limits.

\(\displaystyle \newline Convergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} < 1 \newline Divergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} > 1 \newline Inconclusive: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 1\)

Solution:

1. Ignore constants and simplify the equation (canceling out what you can).

2. Once the equation is simplified, take \(\displaystyle \lim_{n\rightarrow \infty}\).

\(\displaystyle \frac{\frac{e^{n+1}}{5^{n+1}}}{\frac{e^n}{5^n}}\)\(\displaystyle = \frac{\frac{e^{n+1}}{e^n}}{\frac{5^{n+1}}{5^n}}\)\(\displaystyle = \frac{e}^{5}\)

\(\displaystyle \lim_{n\rightarrow \infty} \frac{e}{5} \rightarrow \frac{e}{5}\)

Example Question #12 : Ratio Test

Use the ratio test to find out if the following series is convergent:

\(\displaystyle \sum_{n = 1}^{\infty} \frac{10e^n}{4^n}\)

Note: \(\displaystyle f(n) = \frac{e^n}{4^n}\)

Possible Answers:

\(\displaystyle Divergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 10\frac{e}{4}\)

\(\displaystyle Divergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} \rightarrow \infty\)

\(\displaystyle Convergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 0\)

\(\displaystyle Inconclusive: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 1\)

\(\displaystyle Convergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = \frac{e}{4}\)

Correct answer:

\(\displaystyle Convergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = \frac{e}{4}\)

Explanation:

Determine the convergence of the series based on the limits.

\(\displaystyle \newline Convergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} < 1 \newline Divergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} > 1 \newline Inconclusive: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 1\)

Solution:

1. Ignore constants and simplify the equation (canceling out what you can).

2. Once the equation is simplified, take \(\displaystyle \lim_{n\rightarrow \infty}\).

\(\displaystyle \frac{\frac{e^{n+1}}{4^{n+1}}}{\frac{e^n}{4^n}}\) \(\displaystyle = \frac{\frac{e^{n+1}}{e^n}}{\frac{4^{n+1}}{4^n}}=\frac{e}{4}\) \(\displaystyle ,\lim_{n\rightarrow \infty} \frac{e}{4} \rightarrow\) \(\displaystyle \frac{e}^{4}\)

Example Question #19 : Ratio Test

Use the ratio test to find out if the following series is convergent:

\(\displaystyle \sum_{n = 1}^{\infty} \frac{n!}{e^n}\)

Note: \(\displaystyle f(n) = \frac{n!}{e^n}\)

Possible Answers:

\(\displaystyle Convergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 0.25\)

\(\displaystyle Divergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = e\)

\(\displaystyle Inconclusive: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 1\)

\(\displaystyle Convergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 0\)

\(\displaystyle Divergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} \rightarrow \infty\)

Correct answer:

\(\displaystyle Divergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} \rightarrow \infty\)

Explanation:

Determine the convergence of the series based on the limits.

\(\displaystyle \newline Convergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} < 1 \newline Divergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} > 1 \newline Inconclusive: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 1\)

Solution:

1. Ignore constants and simplify the equation (canceling out what you can).

2. Once the equation is simplified, take \(\displaystyle \lim_{n\rightarrow \infty}\).

 

\(\displaystyle \frac{\frac{(n+1)!}{e^{n+1}}}{\frac{n!}{e^n}}\) \(\displaystyle = \frac{\frac{(n+1)!}{n!}}{\frac{e^{n+1}}{e^n}}\) \(\displaystyle = \frac{n+1}^{e}\) \(\displaystyle ,\lim_{n\rightarrow \infty} \frac{n+1}{e} \rightarrow \infty\)

Learning Tools by Varsity Tutors