Calculus 2 : Convergence and Divergence

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #122 : Series In Calculus

Find the radius of convergence of 

\(\displaystyle \sum_{n=0}^{\infty} \frac{x^{5n}}{3^n}\).

Possible Answers:

\(\displaystyle \infty\)

\(\displaystyle \frac{1}{3^{\frac{1}{5}}}\)

\(\displaystyle 3^{\frac{1}{5}}\)

\(\displaystyle 5^{\frac{1}{3}}\)

Correct answer:

\(\displaystyle 3^{\frac{1}{5}}\)

Explanation:

We can find the radius of convergence of

\(\displaystyle \sum_{n=0}^{\infty} \frac{x^{5n}}{3^n}\)

using the ratio test:

\(\displaystyle \lim_{n\to \infty} \left|\frac{a_{n+1}}{a_n} \right |=\lim_{n\to \infty} \left|\frac{x^{5n+5}}{3^{n+1}}\frac{3^n}{x^{5n}} \right |=\lim_{n\to \infty} \left|\frac{x^{5}}{3} \right |=\left|\frac{x^5}{3}\right|< 1\)

which means that \(\displaystyle |x|< 3^{\frac{1}{5}}\)

So that \(\displaystyle R=3^{\frac{1}{5}}\) is the radius of convergence.

 

Example Question #123 : Series In Calculus

Determine whether the series is convergent or divergent:

\(\displaystyle \sum_{n=0}^{\infty }\frac{n!}{3^{n+2}}\)

Possible Answers:

The series is divergent

The series is (absolutely) convergent

The series is conditionally convergent

The series may be (absolutely) convergent, divergent, or conditionally convergent

Correct answer:

The series is divergent

Explanation:

To determine whether the series given converges or diverges, we must use the Ratio Test, which states that for 

\(\displaystyle L=\lim_{n\rightarrow \infty }\left | \frac{a_{n+1}}{a_{n}}\right |\), if \(\displaystyle L< 1\), then series is (absolutely) convergent; if \(\displaystyle L=1\), then the series may be (absolutely) convergent, divergent, or conditionally convergent; and if \(\displaystyle L>1\), then the series is divergent. 

So, we must evaluate the limit as given by the above formula:

\(\displaystyle L=\lim_{n\rightarrow \infty } \frac{(n+1)!}{3^{n+3}}\cdot \frac{3^{n+2}}{(n)!}=\lim_{n\rightarrow \infty } \frac{n+1}{3}=\infty >1\)

Thus, the series is divergent. 

(The limit was solved by \(\displaystyle \lim_{n\rightarrow \infty } \frac{n}{n}(\frac{1+n^{-1}}{3n^{-1}})=\infty\). As \(\displaystyle n\) approaches infinity, the negative terms go to zero, which makes zero in the denominator and \(\displaystyle 1\) in the numerator, equalling infinity.)

Example Question #124 : Series In Calculus

Determine if the series converges 

\(\displaystyle \sum_{n=0}^{\infty }\frac{3^n}{2^{2n+1}}\)

 

Possible Answers:

Cannot be determined

Series diverges

Series converges

Correct answer:

Series converges

Explanation:

In order to test the convergence of the series, we use the ratio test.

\(\displaystyle L=\lim_{n\rightarrow \infty }\left | \frac{a_{n+1}}{a_n} \right |\)

If...

\(\displaystyle L< 1\) the series is absolutely convergent

\(\displaystyle L=1\) the convergence is undetermined

\(\displaystyle L>1\) the series diverges

For this problem

\(\displaystyle L=\lim_{n\rightarrow \infty }\left | \frac{\frac{3^{n+1}}{2^{2(n+1)+1}}}{\frac{3^n}{2^{2n+1}}} \right |\)

\(\displaystyle =\lim_{n\rightarrow \infty }\left | \frac{3^{n+1}}{2^{2(n+1)+1} } \cdot \frac{2^{2n+1}}{3^n} \right |\)

\(\displaystyle =\lim_{n\rightarrow \infty }\left | \frac{3\cdot3^{n}}{2^2\cdot2^{2n+1} } \cdot \frac{2^{2n+1}}{3^n} \right |\)

\(\displaystyle =\lim_{n\rightarrow \infty }\left | \frac{3}{2^2} } \right |\)

\(\displaystyle =\frac{3}{4}\)

And since 

\(\displaystyle L< 1\) the series absolutely converges.

Example Question #2911 : Calculus Ii

Use the ratio test to figure out if the series 

\(\displaystyle \sum_{n=1}^\infty \frac{1}{n^2+n}\)

converges.

Possible Answers:

It converges

it diverges to infinity

Correct answer:

It converges

Explanation:

an easy sequence to compare \(\displaystyle \frac{1}{n^2+n}\) to is \(\displaystyle \frac{1}{n^2}\), which we know converges.

\(\displaystyle \frac{\frac{1}{n^2}}{\frac{1}{n^2+n}} = \frac{n^2+n}{n^2}\)

We need to find \(\displaystyle \lim_{n \to \infty} \frac{n^2+n}{n^2} = \lim_{n \to \infty} 1+\frac{1}{n}\)

\(\displaystyle \frac{1}{n}\) goes to zero so this limit is \(\displaystyle 1\). Since the limit of the ratio is 1 and \(\displaystyle \sum \frac{1}{n^2}\) converges, \(\displaystyle \sum \frac{1}{n^2+n}\) must converge also.

Example Question #95 : Ratio Test

Can we use the Ratio Test to test the convergence/divergence of the infinite series \(\displaystyle \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^3}\) ?

Possible Answers:

Yes, and the series converges

No, the ratio test fails here.

Yes, and the series diverges

Correct answer:

No, the ratio test fails here.

Explanation:

To use the ratio test, we must first evaluate

\(\displaystyle \lim_{k \to \infty} |\frac{a_{k+1}}{a_k}|\)

\(\displaystyle =\lim_{k \to \infty} |\frac{\frac{(-1)^{k+1}}{(k+1)^3}}{\frac{(-1)^k}{k^3}}|\)

\(\displaystyle =\lim_{k \to \infty} |\frac{(-1)^{k+1}}{(k+1)^{3}} \times \frac{k^3}{(-1)^k}|\)

\(\displaystyle = \lim_{k \to \infty} | -1 \times \frac{k^3}{(k+1)^3}|\)

\(\displaystyle = \lim_{k \to \infty} \frac{k^3}{(k+1)^3}\)

\(\displaystyle =1\)

Since the result of the limit is \(\displaystyle 1\), the Ratio Test fails, and therefore we cannot use it in testing this series for convergence/divergence.

Example Question #2912 : Calculus Ii

Determine whether the series converges or diverges:

\(\displaystyle \sum_{n=0}^{\infty} \frac{(n+2)!}{5^n}\)

Possible Answers:

The series diverges

The series is conditionally convergent

The series converges

The series may be convergent, divergent, or conditionally convergent

Correct answer:

The series diverges

Explanation:

To determine whether the series converges or diverges, we must use the ratio test, which states that for the given series \(\displaystyle \sum_{n=0}^{\infty} a_{n}\), and 

  \(\displaystyle L=\lim_{n\rightarrow \infty} \left |\frac{ a_{n+1}}{a_{n}}\right |\), when L is equal to 1, then the series may be convergent, divergent, or conditionally convergent; when L is less than 1 then the series is convergent; and when L is greater than 1 the series is divergent.

Using the above test, we get

\(\displaystyle L=\lim_{n\rightarrow \infty} \left | \frac{(n+3)!}{5^{n+1}} \cdot \frac{5^n}{(n+2)!} \right |=\lim_{n\rightarrow \infty}\left | \frac{n+3}{5^1}\right |=\infty>1\)

Because L is greater than 1, the series diverges.

Example Question #97 : Ratio Test

\(\displaystyle \sum_{n=0}^{\infty } \frac{n^{2}}{3^{n}}\)

Determine the convergence of the series using the Ratio Test.

Possible Answers:

Cannot be determined

Series converges

Series diverges

Correct answer:

Series converges

Explanation:

The ratio test is defined as follows

\(\displaystyle \lim_{n \to \infty} \left | \frac{a_{n+1}}{a_n} \right |\)

where \(\displaystyle a_n\) is the n-th term of the series.

if the limit

  • is greater than \(\displaystyle 1\), the series diverges
  • is less than \(\displaystyle 1\), the series converges
  • equal to \(\displaystyle 1\), the test is inconclusive

Finding the limit for the terms in our series,

\(\displaystyle \lim_{n \to \infty} \left | \frac{a_{n+1}}{a_n} \right |=\lim_{n \to \infty} \left | \frac{\frac{(n+1)^2}{3^{n+1}}}{\frac{n^2}{3^n}} \right |\)

\(\displaystyle =\lim_{n \to \infty}\left | \frac{(n^2+2n+1)3^n}{(n^2)3^{n+1}} \right |\)

\(\displaystyle =\frac{1}{3}\lim_{n \to \infty}\left | \frac{n^2+2n+1}{n^2} \right |\)

\(\displaystyle =\frac{1}{3}*1\)

\(\displaystyle =\frac{1}{3}\)

Because the limit is less than \(\displaystyle 1\),

the series converges.

Example Question #98 : Ratio Test

\(\displaystyle \sum_{n=0}^{\infty}\frac{(ln\,n)3^n}{2^{2n+1}}\)

Determine the convergence of the series using the Ratio Test.

Possible Answers:

Cannot be determined

Series diverges

Series converges

Correct answer:

Series converges

Explanation:

The ratio test is defined as follows

\(\displaystyle \lim_{n \to \infty} \left | \frac{a_{n+1}}{a_n} \right |\)

where \(\displaystyle a_n\) is the n-th term of the series.

if the limit

  • is greater than \(\displaystyle 1\), the series diverges
  • is less than \(\displaystyle 1\), the series converges
  • equal to \(\displaystyle 1\), the test is inconclusive

Finding the limit for the terms in our series,

\(\displaystyle \lim_{n \to \infty} \left | \frac{a_{n+1}}{a_n} \right |=\lim_{n \to \infty} \left | \frac{\frac{(ln\,n+1)3^{n+1}}{2^{2(n+1)+1}}}{\frac{(ln\,n)3^n}{2^(2n+1)}} \right |\)

\(\displaystyle =\lim_{n \to \infty}\left |\frac{(ln\,n+1)2^{2n+1}*3^{n+1}}{(ln\,n)2^{2n+3}*3^n} \right |\)

\(\displaystyle =\frac{3}{2^2}\lim_{n \to \infty}\left |\frac{ln\,n+1}{ln\,n} \right |\)

\(\displaystyle =\frac{3}{4}*1\)

\(\displaystyle =\frac{3}{4}\)

Because the limit is less than \(\displaystyle 1\),

the series converges.

Example Question #99 : Ratio Test

\(\displaystyle \sum_{n=1}^{\infty}\frac{n!}{4^n}\)

Possible Answers:

Series converges

Series diverges

Cannot be determined

Correct answer:

Series diverges

Explanation:

The ratio test is defined as follows

\(\displaystyle \lim_{n \to \infty} \left | \frac{a_{n+1}}{a_n} \right |\)

where \(\displaystyle a_n\) is the n-th term of the series.

if the limit

  • is greater than \(\displaystyle 1\), the series diverges
  • is less than \(\displaystyle 1\), the series converges
  • equal to \(\displaystyle 1\), the test is inconclusive

Finding the limit for the terms in our series,

\(\displaystyle \lim_{n \to \infty} \left | \frac{a_{n+1}}{a_n} \right |=\lim_{n \to \infty} \left | \frac{\frac{(n+1)!}{4^{n+1}}}{\frac{n!}{4^n}} \right |\)

\(\displaystyle =\lim_{n \to \infty}\left |\frac{(n+1)n!4^n}{n!4^{n+1}} \right |\)

\(\displaystyle =\frac{1}{4}\lim_{n \to \infty}\left |n+1\right |\)

\(\displaystyle =\frac{1}{4}*\infty\)

\(\displaystyle =\infty\)

Because the limit is greater than \(\displaystyle 1\),

the series diverges.

Example Question #100 : Ratio Test

\(\displaystyle \sum_{n=1}^{\infty}\frac{n^3}{n!2^n}\)

Determine the convergence of the series.

Possible Answers:

Series diverges

Series converges

Cannot be determined

Correct answer:

Series converges

Explanation:

The ratio test is defined as follows

\(\displaystyle \lim_{n \to \infty} \left | \frac{a_{n+1}}{a_n} \right |\)

where \(\displaystyle a_n\) is the n-th term of the series.

if the limit

  • is greater than \(\displaystyle 1\), the series diverges
  • is less than \(\displaystyle 1\), the series converges
  • equal to \(\displaystyle 1\), the test is inconclusive

Finding the limit for the terms in our series,

\(\displaystyle \lim_{n \to \infty} \left | \frac{a_{n+1}}{a_n} \right |=\lim_{n \to \infty} \left | \frac{\frac{(n+1)^3}{(n+1)!2^{n+1}}}{\frac{n^3}{n!2^n}} \right |\)

\(\displaystyle =\lim_{n \to \infty}\left | \frac{n!(n+1)^3*2^n}{(n+1)n!n^3*2^{n+1}} \right |\)

\(\displaystyle =\frac{1}{2}\lim_{n \to \infty}\left | \frac{(n+1)^2}{n^3}\right |\)

\(\displaystyle =\frac{1}{2}*0\)

\(\displaystyle =0\)

Because the limit is less than \(\displaystyle 1\),

the series converges.

Learning Tools by Varsity Tutors