All Calculus 2 Resources
Example Questions
Example Question #91 : Polar Form
What is the polar form of ?
We can convert from rectangular to polar form by using the following trigonometric identities: and . Given , then:
Dividing both sides by , we get:
Example Question #92 : Polar Form
What is the polar form of ?
We can convert from rectangular to polar form by using the following trigonometric identities: and . Given , then:
Example Question #93 : Polar Form
What is the polar form of ?
We can convert from rectangular to polar form by using the following trigonometric identities: and . Given , then:
Example Question #1 : Graphing Polar Form
Which of the following substitutions will help solve the following integral?
As we can see in this integral, there is no reverse chain-rule u-substitution possible. The logical step is to use a trigonometric substitution. If one recalls that trig substitutions of the type could be solved with the substitution , then the answer is easily seen. However, we can also use a right triangle:
And thus we have:
or:
Example Question #1 : Graphing Polar Form
Graph the equation where .
At angle the graph as a radius of . As it approaches , the radius approaches .
As the graph approaches , the radius approaches .
Because this is a negative radius, the curve is drawn in the opposite quadrant between and .
Between and , the radius approaches from and redraws the curve in the first quadrant.
Between and , the graph redraws the curve in the fourth quadrant as the radius approaches from .
Example Question #5 : Parametric Form
Draw the graph of from .
Between and , the radius approaches from .
From to the radius goes from to .
Between and , the curve is redrawn in the opposite quadrant, the first quadrant as the radius approaches .
From and , the curve is redrawn in the second quadrant as the radius approaches from .
Example Question #11 : Polar Form
Draw the graph of from .
Because this function has a period of , the x-intercepts of the graph happen at a reference angle of (angles halfway between the angles of the axes).
Between and the radius approaches from .
Between and , the radius approaches from and is drawn in the opposite quadrant, the third quadrant because it has a negative radius.
From to the radius approaches from , and is drawn in the fourth quadrant, the opposite quadrant.
Between and , the radius approaches from .
From and , the radius approaches from .
Between and , the radius approaches from . Because it is a negative radius, it is drawn in the opposite quadrant, the first quadrant.
Then between and the radius approaches from and is draw in the second quadrant.
Finally between and , the radius approaches from .
Example Question #1 : Parametric Form
Draw the graph of where .
Because this function has a period of , the amplitude of the graph appear at a reference angle of (angles halfway between the angles of the axes).
Between and the radius approaches 1 from 0.
Between and , the radius approaches 0 from 1.
From to the radius approaches -1 from 0 and is drawn in the opposite quadrant, the fourth quadrant because it has a negative radius.
Between and , the radius approaches 0 from -1, and is also drawn in the fourth quadrant.
From and , the radius approaches 1 from 0. Between and , the radius approaches 0 from 1.
Then between and the radius approaches -1 from 0. Because it is a negative radius, it is drawn in the opposite quadrant, the second quadrant. Likewise, as the radius approaches 0 from -1. Between and , the curve is drawn in the second quadrant.
Example Question #261 : Parametric, Polar, And Vector
Graph where .
Taking the graph of , we only want the areas in the positive first quadrant because the radius is squared and cannot be negative.
This leaves us with the areas from to , to , and to .
Then, when we take the square root of the radius, we get both a positive and negative answer with a maximum and minimum radius of .
To draw the graph, the radius is 1 at and traces to 0 at . As well, the negative part of the radius starts at -1 and traces to zero in the opposite quadrant, the third quadrant.
From to , the curves are traced from 0 to 1 and 0 to -1 in the fourth quadrant. Following this pattern, the graph is redrawn again from the areas included in to .
Example Question #1 : Graphing Polar Form
Draw the curve of from .
Taking the graph of , we only want the areas in the positive first quadrant because the radius is squared and cannot be negative.
This leaves us with the areas from to and to .
Then, when we take the square root of the radius, we get both a positive and negative answer with a maximum and minimum radius of .
To draw the graph, the radius is 0 at and traces to 1 at . As well, the negative part of the radius starts at 0 and traces to-1 in the opposite quadrant, the third quadrant.
From to , the curves are traced from 1 to 0 and -1 to 0 in the third quadrant.
Following this pattern, the graph is redrawn again from the areas included in to .
Certified Tutor