Calculus 2 : Parametric, Polar, and Vector

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #2 : Parametric Form

Given  and , what is the length of the arc from ?

Possible Answers:

Correct answer:

Explanation:

In order to find the arc length, we must use the arc length formula for parametric curves:

.

Given  and , we can use using the Power Rule

for all  , to derive

 and

 .

Plugging these values and our boundary values for into the arc length equation, we get:

Now, using the Power Rule for Integrals

for all ,

we can determine that:

Example Question #151 : Parametric

Given  and , what is the length of the arc from ?

Possible Answers:

Correct answer:

Explanation:

In order to find the arc length, we must use the arc length formula for parametric curves:

.

Given  and , we can use using the Power Rule

 for all , to derive 

 and 

.

Plugging these values and our boundary values for  into the arc length equation, we get:

Now, using the Power Rule for Integrals

 for all ,

we can determine that:

Example Question #151 : Parametric

Given  and , what is the length of the arc from ?

Possible Answers:

Correct answer:

Explanation:

In order to find the arc length, we must use the arc length formula for parametric curves:

.

Given  and , we can use using the Power Rule

 for all , to derive 

  and 

.

Plugging these values and our boundary values for  into the arc length equation, we get:

Now, using the Power Rule for Integrals

 for all ,

we can determine that:

 

Example Question #152 : Parametric

Eliminate the parameter  from  and  to write this system as one equation.

Possible Answers:

Correct answer:

Explanation:

 

To eliminate the parameter  from  and , we will solve the  equation for  and substitute the new expression into the  equation. We could also solve the  equation for  and substitute the new expression into the  equation, depending on which is easier.

For our equations,  and , it is easiest to solve the  equation for , giving us .  

Substituting our new expression for  into the  equation, we get

Example Question #13 : Parametric Calculations

Eliminate the parameter  from  and  to write this system as one equation.

Possible Answers:

Correct answer:

Explanation:

To eliminate the parameter  from  and , we will solve the  equation for  and substitute the new expression into the  equation. We could also solve the  equation for  and substitute the new expression into the  equation, depending on which is easier. 

For our equations,   and  , we will rearrange the  equation

To eleiminate the  on the right side of the equation, we will take the exponential of both sides of the equation

Using the exponential identity 

Substituting this value of  into the  equation, we have

Using the logarithmic identity, 

The using the identity, 

Giving us the final expression

Example Question #152 : Parametric

Eliminate the parameter  from  and .

 

Possible Answers:

 

Correct answer:

 

Explanation:

To eliminate the parameter  from  and , we will solve the  equation for  and substitute the new expression into the  equation. We could also solve the  equation for  and substitute the new expression into the  equation, depending on which is easier. 

For our equations,  and , we will rearrange the  equation.

To eliminate the exponential from the right side of the equation, we will take the  of both sides of the equation.

Using the logarithmic identity, 

Substituting this value of  into the  equation, we have

Using the logarithmic identity , where  is a constant

Therefore .

Example Question #3 : Parametric, Polar, And Vector Functions

Find the length of the following parametric curve 

,   ,   .

Possible Answers:

Correct answer:

Explanation:

The length of a curve is found using the equation 

We use the product rule,

, when  and  are functions of ,

the trigonometric rule,

 and  

and exponential rule,

 to find  and 

In this case

,   

 

The length of this curve is

Using the identity 

Using the identity 

Using the trigonometric identity  where  is a constant and 

Using the exponential rule, 

Using the exponential rule, , gives us the final solution

 

 

Example Question #21 : Parametric Calculations

Find the length of the following parametric curve 

,   ,   .

Possible Answers:

Correct answer:

Explanation:

The length of a curve is found using the equation 

We use the power rule  , where  is a constant, to find  and .

,   

In this case

The length of this curve is

Using the identity 

Using a u-substitution

Let 

 

and changing the bounds

 

 

 

 

Example Question #22 : Parametric Calculations

Find the length of the following parametric curve 

,   ,   .

Possible Answers:

Correct answer:

Explanation:

The length of a curve is found using the equation 

,   ,   .

We use the power rule  , where  is a constant, to find  and 

In this case, the length of this curve is

Using the identity 

using a u-substitution

and changing the bounds

Example Question #23 : Parametric Calculations

Find the length of the following parametric curve 

,   ,   .

Possible Answers:

Correct answer:

Explanation:

The length of a curve is found using the equation 

We then use the following trigonometric rules, 

 and  ,

where  and  are constants.

In this case

,

 

The length of this curve is

Using the identity 

Using the trigonometric identity  where  is a constant

Using the rule of integration for constants

Learning Tools by Varsity Tutors