Calculus 2 : Parametric, Polar, and Vector

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #131 : Parametric, Polar, And Vector

Find the derivative of the following parametric function at \displaystyle t=0:

\displaystyle x=t^2\cos(t)+3t

\displaystyle y=te^t

 

Possible Answers:

\displaystyle -\frac{1}{3}

\displaystyle \infty

\displaystyle 0

\displaystyle \frac{1}{3}

Correct answer:

\displaystyle \frac{1}{3}

Explanation:

The derivative of a parametric function is given by the following:

\displaystyle \frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}

So, we must find the derivative of each function at the t given:

\displaystyle y'=e^t+te^t\displaystyle x'=2t\cos(t)-t^2\sin(t)+3

The derivatives were found using the following rules:

\displaystyle \frac{d}{dx}(e^x)=e^x\displaystyle \frac{d}{dx}(x^n)=nx^{n-1}

\displaystyle \frac{d}{dx}\sin(x)=\cos(x)

\displaystyle \frac{d}{dx}f(x)g(x)=f'(x)g(x)+f(x)g'(x)

Next, plug in the given \displaystyle t=0 into each derivative function:

\displaystyle y'(0)=1\displaystyle x'(0)=3

Finally, divide \displaystyle \frac{y'}{x'} to get a final answer of \displaystyle \frac{1}{3}.

 

Example Question #132 : Parametric, Polar, And Vector

Find \displaystyle \frac{dy}{dx} for the following set of parametric equations for \displaystyle t = 2.

\displaystyle y = 5t^{2} + 3t

\displaystyle x = \ln t

Possible Answers:

\displaystyle \frac{1}{46}

\displaystyle \frac{1}{23}

\displaystyle 23

\displaystyle 46

Does not Exist

Correct answer:

\displaystyle 46

Explanation:

Finding \displaystyle \frac{dy}{dx} of a parametric equation can be given by this formula: 

\displaystyle \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}.

So we must find \displaystyle \frac{dy}{dt} and \displaystyle \frac{dx}{dt} for when \displaystyle t = 2

\displaystyle \frac{dy}{dt} = 10t + 3 and \displaystyle \frac{dx}{dt} = \frac{1}{t} and so 

\displaystyle \frac{dy}{dx} = 10t^{2} + 3t.

When you plug in  \displaystyle t = 2 you get your answer \displaystyle 46.

Example Question #133 : Parametric, Polar, And Vector

Find the derivative of the following parametric equation

\displaystyle \mathbf{r}(t)=t^{3}\mathbf{i}+3ln(t)\mathbf{j}+5sin(t)\mathbf{k}

Possible Answers:

Does not exist

\displaystyle \mathbf{r'}(t)=3t^{2}\mathbf{i}+\frac{3}{t}\mathbf{j}+5cos(t)\mathbf{k}

\displaystyle \mathbf{r'}(t)=3t^{2}+\frac{3}{t}+5cos(t)

\displaystyle \mathbf{r'}(t)=2t^{2}\mathbf{i}+3t\mathbf{j}+5cos(t)\mathbf{k}

\displaystyle \mathbf{r'}(t)=t^{3}\mathbf{i}+3ln(t)\mathbf{j}+5sin(t)\mathbf{k}

Correct answer:

\displaystyle \mathbf{r'}(t)=3t^{2}\mathbf{i}+\frac{3}{t}\mathbf{j}+5cos(t)\mathbf{k}

Explanation:

This parametric equation is described as the sum of three vectors.  To find the derivative of a parametric equation, you must find the derivative of each vector, or if

\displaystyle \mathbf{r}(t)=x(t)\mathbf{i}+y(t)\mathbf{j}+x(t)\mathbf{k}  then  \displaystyle \mathbf{r'}(t)=x'(t)\mathbf{i}+y'(t)\mathbf{j}+x'(t)\mathbf{k}

The derivative of the first vector is found using the power rule, 

\displaystyle \frac{d}{dt}(t^{c})=ct^{c-1} where \displaystyle c is a constant.

The derivative of the second vector is found using the natural logarithm rule,

\displaystyle \frac{d}{dt}[ln(t)]=\frac{1}{t}.

The derivative of the third vector is found using one of the trigonmetric rules,

\displaystyle \frac{d}{dt}[sin(t)]=cos(t).

In this case:

\displaystyle \mathbf{r'}(t)=\frac{d}{dt}(t^{3})\mathbf{i}+3\frac{d}{dt}[ln(t)]\mathbf{j}+5\frac{d}{dt}[sin(t)]\mathbf{k}

\displaystyle =3t^{2}\mathbf{i}+\frac{3}{t}\mathbf{j}+5cos(t)\mathbf{k}

Example Question #134 : Parametric, Polar, And Vector

Find the derivative of the following parametric equation

\displaystyle \mathbf{r}(t)=t\mathbf{i}+3e^{t}\mathbf{j}+sin(\pi t)\mathbf{k}

Possible Answers:

\displaystyle \mathbf{r'}(t)=t\mathbf{i}+9e^{t}\mathbf{j}+\pi sin(\pi t)\mathbf{k}

\displaystyle \mathbf{r'}(t)=\mathbf{i}+3e^{t}\mathbf{j}+\pi cos(\pi t)\mathbf{k}

\displaystyle \mathbf{r'}(t)=t\mathbf{i}+3e^{t}\mathbf{j}+sin(\pi t)\mathbf{k}

\displaystyle \mathbf{r'}(t)=1+3e^{t}+\pi cos(\pi t)

Does not exist

Correct answer:

\displaystyle \mathbf{r'}(t)=\mathbf{i}+3e^{t}\mathbf{j}+\pi cos(\pi t)\mathbf{k}

Explanation:

This parametric equation is described as the sum of three vectors.  To find the derivative of a parametric equation, you must find the derivative of each vector, or if

\displaystyle \mathbf{r}(t)=x(t)\mathbf{i}+y(t)\mathbf{j}+x(t)\mathbf{k},  then  \displaystyle \mathbf{r'}(t)=x'(t)\mathbf{i}+y'(t)\mathbf{j}+x'(t)\mathbf{k}

The derivative of the first vector is found using the power rule, 

\displaystyle \frac{d}{dt}(t)=1.

The derivative of the second vector is found using the exponential rule,

\displaystyle \frac{d}{dt}(e^{t})=e^{t}.

The derivative of the third vector is found using one of the trigonmetric rules,

\displaystyle \frac{d}{dt}[sin(at)]=acos(at), where \displaystyle a is a constant.

 

In this case:

 \displaystyle \mathbf{r'}(t)=\frac{d}{dt}(t)\mathbf{i}+3\frac{d}{dt}(e^{t})\mathbf{j}+\frac{d}{dt}[sin(\pi t)]\mathbf{k}

\displaystyle =\mathbf{i}+3e^{t}\mathbf{j}+\pi cos(\pi t)\mathbf{k}

Example Question #135 : Parametric, Polar, And Vector

Find the derivative of the following parametric equation

 \displaystyle \mathbf{r}(t)=2cos(5t)\mathbf{i}+5sin(7t)\mathbf{j}

Possible Answers:

Does not exist

\displaystyle \mathbf{r'}(t)=-10cos(5t)\mathbf{i}+35sin(7t)\mathbf{j}

\displaystyle \mathbf{r'}(t)=-10sin(5t)+35cos(7t)

 \displaystyle \mathbf{r'}(t)=-10sin(5t)\mathbf{i}+35cos(7t)\mathbf{j}

\displaystyle \mathbf{r'}(t)=2cos(5t)\mathbf{i}+5sin(7t)\mathbf{j}

Correct answer:

 \displaystyle \mathbf{r'}(t)=-10sin(5t)\mathbf{i}+35cos(7t)\mathbf{j}

Explanation:

This parametric equation is described as the sum of three vectors.  To find the derivative of a parametric equation, you must find the derivative of each vector, or if

\displaystyle \mathbf{r}(t)=x(t)\mathbf{i}+y(t)\mathbf{j}+x(t)\mathbf{k},  then  \displaystyle \mathbf{r'}(t)=x'(t)\mathbf{i}+y'(t)\mathbf{j}+x'(t)\mathbf{k}

The derivative of the first and second vectors are found using the following trigonometric rules, 

\displaystyle \frac{d}{dt}[cos(at)]=-asin(at) and  \displaystyle \frac{d}{dt}[sin(bt)]=bcos(bt),

where \displaystyle a and \displaystyle b are constants.

 

In this case:

\displaystyle \mathbf{r'}(t)=2\frac{d}{dt}[cos(5t)]\mathbf{i}+5\frac{d}{dt}[sin(7t)]\mathbf{j}

\displaystyle =[2*(-sin(5t))*5]\mathbf{i}+[5*cos(7t)*7]\mathbf{j}

\displaystyle =-10sin(5t)\mathbf{i}+35cos(7t)\mathbf{j}

Example Question #136 : Parametric, Polar, And Vector

Find  \displaystyle \frac{dy}{dx} when \displaystyle x=sin(7t) and \displaystyle y=cos(7t).

Possible Answers:

\displaystyle \frac{dy}{dx}=7cos(7t)

\displaystyle \frac{dy}{dx}=-tan(7t)

\displaystyle \frac{dy}{dx}=-7sin(7t)

\displaystyle \frac{dy}{dx}=-7sin(7t)\mathbf{i}+7cos(7t)\mathbf{j}

\displaystyle \frac{dy}{dx}=-7tan(7t)

Correct answer:

\displaystyle \frac{dy}{dx}=-tan(7t)

Explanation:

If \displaystyle x=x(t) and \displaystyle y=y(t), then we can use the chain rule to define \displaystyle \frac{dy}{dx} as 

\displaystyle \frac{dy}{dx}=\frac{dy}{dt}/\frac{dx}{dt}.  

We then use the following trigonometric rules, 

\displaystyle \frac{d}{dt}[cos(at)]=-asin(at) and  \displaystyle \frac{d}{dt}[sin(bt)]=bcos(bt),

where \displaystyle a and \displaystyle b are constants.

In this case:

 \displaystyle \frac{dy}{dt}=\frac{d}{dt}(cos(7t))=-7sin(7t),

 and

 \displaystyle \frac{dx}{dt}=\frac{d}{dt}(sin(7t))=7cos(7t),

therefore 

\displaystyle \frac{dy}{dx}=\frac{dy}{dt}/\frac{dx}{dt}=\frac{-7sin(7t)}{7cos(7t)}=-tan(7t).

Example Question #1 : Parametric Calculations

Calculate the length of the curve drawn out by the vector function  from \displaystyle 0< t< 1.

Possible Answers:

\displaystyle e^2 +e^4

None of the other answers.

\displaystyle \frac{1}{2}(e^2+1)

\displaystyle ln(2) -1

\displaystyle e+1

Correct answer:

\displaystyle \frac{1}{2}(e^2+1)

Explanation:

The formula for arc length of a parametric curve in space is \displaystyle \int_{a}^{b} \sqrt{(\frac{d\mathbf{v}_1}{dt})^2 +(\frac{d\mathbf{v}_2}{dt})^2 +(\frac{d\mathbf{v}_3}{dt})^2} dt for \displaystyle a < t< b.

Taking derivatives of each of the vector function components and substituting the values into this formula gives

\displaystyle \int_{0}^{1} \sqrt{1 + 2e^{2t} + e^{4t}} dt

We need to recognize that underneath the square root we have a perfect square, and we can write it as

\displaystyle \int_{0}^{1} \sqrt{(e^{2t} + 1)^2} dt

Solving this we get

\displaystyle \int_{0}^{1} e^{2t}+1 dt = [\frac{1}{2}e^{2t} +t]_0^1 \displaystyle = \bigg(\frac{1}{2}e^2+1\bigg)-\bigg(\frac{1}{2}\bigg) = \frac{1}{2}(e^2+1)

Example Question #132 : Parametric, Polar, And Vector

Calculate \displaystyle \frac{dy}{dx} at the point \displaystyle (1,2) on the curve defined by the parametric equations

\displaystyle x(t) = e^t\displaystyle y(t)=ln(t+1)+t^2 +2


Possible Answers:

\displaystyle ln(2)

\displaystyle 28

\displaystyle ln(3)

\displaystyle 2

None of the other answers

Correct answer:

None of the other answers

Explanation:

The correct answer is \displaystyle 1.

We use the equation

\displaystyle \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\frac{1}{t+1}+2t+0}{e^t}

But we need a value for \displaystyle t to substitute into our derivative. We can obtain such a \displaystyle t by setting \displaystyle x(t) =1, y(t) =2 as our given point suggests.

\displaystyle 1 = e^t \displaystyle \Rightarrow t =0
\displaystyle 2 = ln(t+1)+t^2+2 \Rightarrow t=0
Since our values of \displaystyle t match, \displaystyle t=0 is our correcct value. Substituting this into the derivative and simplifying gives us our answer of \displaystyle 1.

Example Question #131 : Parametric, Polar, And Vector

Which of the answers below is the equation obtained by eliminating the parametric from the following set of parametric equations?

\displaystyle x=t^2+3t+5

\displaystyle y=\frac{3}{2}t-6

Possible Answers:

\displaystyle x=\frac{3}{2}y^2+16y+\frac{4}{3}

\displaystyle y=\frac{3}{2}x^2+16x+\frac{4}{3}

\displaystyle x=\frac{4}{9}y^2+\frac{22}{3}y+33

\displaystyle y=\frac{4}{9}x^2+\frac{22}{3}x+33

\displaystyle y=-\frac{14}{3}x^2+\frac{4}{7}x-4

Correct answer:

\displaystyle x=\frac{4}{9}y^2+\frac{22}{3}y+33

Explanation:

When the problem asks us to eliminate the parametric, that means we want to somehow get rid of our variable t and be left with an equation that is only in terms of x and y. While the equation for x is a polynomial, making it more difficult to solve for t, we can see that the equation for y can easily be solved for t:

\displaystyle y=\frac{3}{2}t-6

\displaystyle t=\frac{2}{3}y+4

Now that we have an expression for t that is only in terms of y, we can plug this into our equation for x and simplify, and we will be left with an equation that is only in terms of x and y:

\displaystyle x=t^2+3t+5=(\frac{2}{3}y+4)^2+3(\frac{2}{3}y+4)+5

\displaystyle x=\frac{4}{9}y^2+\frac{16}{3}y+16+2y+12+5

\displaystyle x=\frac{4}{9}y^2+\frac{22}{3}y+33

Example Question #4 : Parametric Calculations

Suppose \displaystyle x=cos(t) and \displaystyle y=sin(t).  Find the arc length from \displaystyle 0\leq t \leq \pi.

Possible Answers:

\displaystyle \sqrt{\pi}

\displaystyle \sqrt{\frac{\pi}{2}}

\displaystyle \frac{\pi}{2}

\displaystyle 2\pi

\displaystyle \pi

Correct answer:

\displaystyle \pi

Explanation:

Write the arc length formula for parametric curves.

\displaystyle L=\int_{a}^{b}\sqrt{\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2}\:dt

Find the derivatives.  The bounds are given in the problem statement.

\displaystyle \frac{dx}{dt}=-sin(t)

\displaystyle \frac{dy}{dt}=cos(t)

\displaystyle L=\int_{0}^{\pi}\sqrt{(-sin(t))^2+(cos(t))^2}\:dt

\displaystyle L=\int_{0}^{\pi}\sqrt{sin(t)^2+cos(t)^2}\:dt

\displaystyle L=\int_{0}^{\pi}1\:dt =[t]_{0}^{\pi}= \pi

Learning Tools by Varsity Tutors