Calculus 2 : Parametric, Polar, and Vector

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #131 : Parametric, Polar, And Vector

Find the derivative of the following parametric function at \(\displaystyle t=0\):

\(\displaystyle x=t^2\cos(t)+3t\)

\(\displaystyle y=te^t\)

 

Possible Answers:

\(\displaystyle -\frac{1}{3}\)

\(\displaystyle \infty\)

\(\displaystyle 0\)

\(\displaystyle \frac{1}{3}\)

Correct answer:

\(\displaystyle \frac{1}{3}\)

Explanation:

The derivative of a parametric function is given by the following:

\(\displaystyle \frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}\)

So, we must find the derivative of each function at the t given:

\(\displaystyle y'=e^t+te^t\)\(\displaystyle x'=2t\cos(t)-t^2\sin(t)+3\)

The derivatives were found using the following rules:

\(\displaystyle \frac{d}{dx}(e^x)=e^x\)\(\displaystyle \frac{d}{dx}(x^n)=nx^{n-1}\)

\(\displaystyle \frac{d}{dx}\sin(x)=\cos(x)\)

\(\displaystyle \frac{d}{dx}f(x)g(x)=f'(x)g(x)+f(x)g'(x)\)

Next, plug in the given \(\displaystyle t=0\) into each derivative function:

\(\displaystyle y'(0)=1\)\(\displaystyle x'(0)=3\)

Finally, divide \(\displaystyle \frac{y'}{x'}\) to get a final answer of \(\displaystyle \frac{1}{3}\).

 

Example Question #132 : Parametric, Polar, And Vector

Find \(\displaystyle \frac{dy}{dx}\) for the following set of parametric equations for \(\displaystyle t = 2\).

\(\displaystyle y = 5t^{2} + 3t\)

\(\displaystyle x = \ln t\)

Possible Answers:

\(\displaystyle \frac{1}{46}\)

\(\displaystyle \frac{1}{23}\)

\(\displaystyle 23\)

\(\displaystyle 46\)

Does not Exist

Correct answer:

\(\displaystyle 46\)

Explanation:

Finding \(\displaystyle \frac{dy}{dx}\) of a parametric equation can be given by this formula: 

\(\displaystyle \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}\).

So we must find \(\displaystyle \frac{dy}{dt}\) and \(\displaystyle \frac{dx}{dt}\) for when \(\displaystyle t = 2\)

\(\displaystyle \frac{dy}{dt} = 10t + 3\) and \(\displaystyle \frac{dx}{dt} = \frac{1}{t}\) and so 

\(\displaystyle \frac{dy}{dx} = 10t^{2} + 3t\).

When you plug in  \(\displaystyle t = 2\) you get your answer \(\displaystyle 46\).

Example Question #133 : Parametric, Polar, And Vector

Find the derivative of the following parametric equation

\(\displaystyle \mathbf{r}(t)=t^{3}\mathbf{i}+3ln(t)\mathbf{j}+5sin(t)\mathbf{k}\)

Possible Answers:

Does not exist

\(\displaystyle \mathbf{r'}(t)=3t^{2}\mathbf{i}+\frac{3}{t}\mathbf{j}+5cos(t)\mathbf{k}\)

\(\displaystyle \mathbf{r'}(t)=3t^{2}+\frac{3}{t}+5cos(t)\)

\(\displaystyle \mathbf{r'}(t)=2t^{2}\mathbf{i}+3t\mathbf{j}+5cos(t)\mathbf{k}\)

\(\displaystyle \mathbf{r'}(t)=t^{3}\mathbf{i}+3ln(t)\mathbf{j}+5sin(t)\mathbf{k}\)

Correct answer:

\(\displaystyle \mathbf{r'}(t)=3t^{2}\mathbf{i}+\frac{3}{t}\mathbf{j}+5cos(t)\mathbf{k}\)

Explanation:

This parametric equation is described as the sum of three vectors.  To find the derivative of a parametric equation, you must find the derivative of each vector, or if

\(\displaystyle \mathbf{r}(t)=x(t)\mathbf{i}+y(t)\mathbf{j}+x(t)\mathbf{k}\)  then  \(\displaystyle \mathbf{r'}(t)=x'(t)\mathbf{i}+y'(t)\mathbf{j}+x'(t)\mathbf{k}\)

The derivative of the first vector is found using the power rule, 

\(\displaystyle \frac{d}{dt}(t^{c})=ct^{c-1}\) where \(\displaystyle c\) is a constant.

The derivative of the second vector is found using the natural logarithm rule,

\(\displaystyle \frac{d}{dt}[ln(t)]=\frac{1}{t}\).

The derivative of the third vector is found using one of the trigonmetric rules,

\(\displaystyle \frac{d}{dt}[sin(t)]=cos(t)\).

In this case:

\(\displaystyle \mathbf{r'}(t)=\frac{d}{dt}(t^{3})\mathbf{i}+3\frac{d}{dt}[ln(t)]\mathbf{j}+5\frac{d}{dt}[sin(t)]\mathbf{k}\)

\(\displaystyle =3t^{2}\mathbf{i}+\frac{3}{t}\mathbf{j}+5cos(t)\mathbf{k}\)

Example Question #134 : Parametric, Polar, And Vector

Find the derivative of the following parametric equation

\(\displaystyle \mathbf{r}(t)=t\mathbf{i}+3e^{t}\mathbf{j}+sin(\pi t)\mathbf{k}\)

Possible Answers:

\(\displaystyle \mathbf{r'}(t)=t\mathbf{i}+9e^{t}\mathbf{j}+\pi sin(\pi t)\mathbf{k}\)

\(\displaystyle \mathbf{r'}(t)=\mathbf{i}+3e^{t}\mathbf{j}+\pi cos(\pi t)\mathbf{k}\)

\(\displaystyle \mathbf{r'}(t)=t\mathbf{i}+3e^{t}\mathbf{j}+sin(\pi t)\mathbf{k}\)

\(\displaystyle \mathbf{r'}(t)=1+3e^{t}+\pi cos(\pi t)\)

Does not exist

Correct answer:

\(\displaystyle \mathbf{r'}(t)=\mathbf{i}+3e^{t}\mathbf{j}+\pi cos(\pi t)\mathbf{k}\)

Explanation:

This parametric equation is described as the sum of three vectors.  To find the derivative of a parametric equation, you must find the derivative of each vector, or if

\(\displaystyle \mathbf{r}(t)=x(t)\mathbf{i}+y(t)\mathbf{j}+x(t)\mathbf{k}\),  then  \(\displaystyle \mathbf{r'}(t)=x'(t)\mathbf{i}+y'(t)\mathbf{j}+x'(t)\mathbf{k}\)

The derivative of the first vector is found using the power rule, 

\(\displaystyle \frac{d}{dt}(t)=1\).

The derivative of the second vector is found using the exponential rule,

\(\displaystyle \frac{d}{dt}(e^{t})=e^{t}\).

The derivative of the third vector is found using one of the trigonmetric rules,

\(\displaystyle \frac{d}{dt}[sin(at)]=acos(at)\), where \(\displaystyle a\) is a constant.

 

In this case:

 \(\displaystyle \mathbf{r'}(t)=\frac{d}{dt}(t)\mathbf{i}+3\frac{d}{dt}(e^{t})\mathbf{j}+\frac{d}{dt}[sin(\pi t)]\mathbf{k}\)

\(\displaystyle =\mathbf{i}+3e^{t}\mathbf{j}+\pi cos(\pi t)\mathbf{k}\)

Example Question #135 : Parametric, Polar, And Vector

Find the derivative of the following parametric equation

 \(\displaystyle \mathbf{r}(t)=2cos(5t)\mathbf{i}+5sin(7t)\mathbf{j}\)

Possible Answers:

Does not exist

\(\displaystyle \mathbf{r'}(t)=-10cos(5t)\mathbf{i}+35sin(7t)\mathbf{j}\)

\(\displaystyle \mathbf{r'}(t)=-10sin(5t)+35cos(7t)\)

 \(\displaystyle \mathbf{r'}(t)=-10sin(5t)\mathbf{i}+35cos(7t)\mathbf{j}\)

\(\displaystyle \mathbf{r'}(t)=2cos(5t)\mathbf{i}+5sin(7t)\mathbf{j}\)

Correct answer:

 \(\displaystyle \mathbf{r'}(t)=-10sin(5t)\mathbf{i}+35cos(7t)\mathbf{j}\)

Explanation:

This parametric equation is described as the sum of three vectors.  To find the derivative of a parametric equation, you must find the derivative of each vector, or if

\(\displaystyle \mathbf{r}(t)=x(t)\mathbf{i}+y(t)\mathbf{j}+x(t)\mathbf{k}\),  then  \(\displaystyle \mathbf{r'}(t)=x'(t)\mathbf{i}+y'(t)\mathbf{j}+x'(t)\mathbf{k}\)

The derivative of the first and second vectors are found using the following trigonometric rules, 

\(\displaystyle \frac{d}{dt}[cos(at)]=-asin(at)\) and  \(\displaystyle \frac{d}{dt}[sin(bt)]=bcos(bt)\),

where \(\displaystyle a\) and \(\displaystyle b\) are constants.

 

In this case:

\(\displaystyle \mathbf{r'}(t)=2\frac{d}{dt}[cos(5t)]\mathbf{i}+5\frac{d}{dt}[sin(7t)]\mathbf{j}\)

\(\displaystyle =[2*(-sin(5t))*5]\mathbf{i}+[5*cos(7t)*7]\mathbf{j}\)

\(\displaystyle =-10sin(5t)\mathbf{i}+35cos(7t)\mathbf{j}\)

Example Question #136 : Parametric, Polar, And Vector

Find  \(\displaystyle \frac{dy}{dx}\) when \(\displaystyle x=sin(7t)\) and \(\displaystyle y=cos(7t)\).

Possible Answers:

\(\displaystyle \frac{dy}{dx}=7cos(7t)\)

\(\displaystyle \frac{dy}{dx}=-tan(7t)\)

\(\displaystyle \frac{dy}{dx}=-7sin(7t)\)

\(\displaystyle \frac{dy}{dx}=-7sin(7t)\mathbf{i}+7cos(7t)\mathbf{j}\)

\(\displaystyle \frac{dy}{dx}=-7tan(7t)\)

Correct answer:

\(\displaystyle \frac{dy}{dx}=-tan(7t)\)

Explanation:

If \(\displaystyle x=x(t)\) and \(\displaystyle y=y(t)\), then we can use the chain rule to define \(\displaystyle \frac{dy}{dx}\) as 

\(\displaystyle \frac{dy}{dx}=\frac{dy}{dt}/\frac{dx}{dt}\).  

We then use the following trigonometric rules, 

\(\displaystyle \frac{d}{dt}[cos(at)]=-asin(at)\) and  \(\displaystyle \frac{d}{dt}[sin(bt)]=bcos(bt)\),

where \(\displaystyle a\) and \(\displaystyle b\) are constants.

In this case:

 \(\displaystyle \frac{dy}{dt}=\frac{d}{dt}(cos(7t))=-7sin(7t)\),

 and

 \(\displaystyle \frac{dx}{dt}=\frac{d}{dt}(sin(7t))=7cos(7t)\),

therefore 

\(\displaystyle \frac{dy}{dx}=\frac{dy}{dt}/\frac{dx}{dt}=\frac{-7sin(7t)}{7cos(7t)}=-tan(7t)\).

Example Question #131 : Parametric

Calculate the length of the curve drawn out by the vector function \(\displaystyle {\mathbf{v}(t)} = \left \langle t,\sqrt{2}}e^t,\frac{1}{2}e^{2t} \right \rangle,\) from \(\displaystyle 0< t< 1\).

Possible Answers:

\(\displaystyle ln(2) -1\)

\(\displaystyle e^2 +e^4\)

None of the other answers.

\(\displaystyle \frac{1}{2}(e^2+1)\)

\(\displaystyle e+1\)

Correct answer:

\(\displaystyle \frac{1}{2}(e^2+1)\)

Explanation:

The formula for arc length of a parametric curve in space is \(\displaystyle \int_{a}^{b} \sqrt{(\frac{d\mathbf{v}_1}{dt})^2 +(\frac{d\mathbf{v}_2}{dt})^2 +(\frac{d\mathbf{v}_3}{dt})^2} dt\) for \(\displaystyle a < t< b\).

Taking derivatives of each of the vector function components and substituting the values into this formula gives

\(\displaystyle \int_{0}^{1} \sqrt{1 + 2e^{2t} + e^{4t}} dt\)

We need to recognize that underneath the square root we have a perfect square, and we can write it as

\(\displaystyle \int_{0}^{1} \sqrt{(e^{2t} + 1)^2} dt\)

Solving this we get

\(\displaystyle \int_{0}^{1} e^{2t}+1 dt = [\frac{1}{2}e^{2t} +t]_0^1\) \(\displaystyle = \bigg(\frac{1}{2}e^2+1\bigg)-\bigg(\frac{1}{2}\bigg) = \frac{1}{2}(e^2+1)\)

Example Question #132 : Parametric, Polar, And Vector

Calculate \(\displaystyle \frac{dy}{dx}\) at the point \(\displaystyle (1,2)\) on the curve defined by the parametric equations

\(\displaystyle x(t) = e^t\)\(\displaystyle y(t)=ln(t+1)+t^2 +2\)


Possible Answers:

\(\displaystyle ln(2)\)

\(\displaystyle 28\)

\(\displaystyle ln(3)\)

\(\displaystyle 2\)

None of the other answers

Correct answer:

None of the other answers

Explanation:

The correct answer is \(\displaystyle 1\).

We use the equation

\(\displaystyle \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\frac{1}{t+1}+2t+0}{e^t}\)

But we need a value for \(\displaystyle t\) to substitute into our derivative. We can obtain such a \(\displaystyle t\) by setting \(\displaystyle x(t) =1, y(t) =2\) as our given point suggests.

\(\displaystyle 1 = e^t\) \(\displaystyle \Rightarrow t =0\)
\(\displaystyle 2 = ln(t+1)+t^2+2 \Rightarrow t=0\)
Since our values of \(\displaystyle t\) match, \(\displaystyle t=0\) is our correcct value. Substituting this into the derivative and simplifying gives us our answer of \(\displaystyle 1.\)

Example Question #132 : Parametric

Which of the answers below is the equation obtained by eliminating the parametric from the following set of parametric equations?

\(\displaystyle x=t^2+3t+5\)

\(\displaystyle y=\frac{3}{2}t-6\)

Possible Answers:

\(\displaystyle y=\frac{3}{2}x^2+16x+\frac{4}{3}\)

\(\displaystyle x=\frac{4}{9}y^2+\frac{22}{3}y+33\)

\(\displaystyle y=-\frac{14}{3}x^2+\frac{4}{7}x-4\)

\(\displaystyle y=\frac{4}{9}x^2+\frac{22}{3}x+33\)

\(\displaystyle x=\frac{3}{2}y^2+16y+\frac{4}{3}\)

Correct answer:

\(\displaystyle x=\frac{4}{9}y^2+\frac{22}{3}y+33\)

Explanation:

When the problem asks us to eliminate the parametric, that means we want to somehow get rid of our variable t and be left with an equation that is only in terms of x and y. While the equation for x is a polynomial, making it more difficult to solve for t, we can see that the equation for y can easily be solved for t:

\(\displaystyle y=\frac{3}{2}t-6\)

\(\displaystyle t=\frac{2}{3}y+4\)

Now that we have an expression for t that is only in terms of y, we can plug this into our equation for x and simplify, and we will be left with an equation that is only in terms of x and y:

\(\displaystyle x=t^2+3t+5=(\frac{2}{3}y+4)^2+3(\frac{2}{3}y+4)+5\)

\(\displaystyle x=\frac{4}{9}y^2+\frac{16}{3}y+16+2y+12+5\)

\(\displaystyle x=\frac{4}{9}y^2+\frac{22}{3}y+33\)

Example Question #4 : Parametric Calculations

Suppose \(\displaystyle x=cos(t)\) and \(\displaystyle y=sin(t)\).  Find the arc length from \(\displaystyle 0\leq t \leq \pi\).

Possible Answers:

\(\displaystyle \sqrt{\pi}\)

\(\displaystyle \sqrt{\frac{\pi}{2}}\)

\(\displaystyle \frac{\pi}{2}\)

\(\displaystyle 2\pi\)

\(\displaystyle \pi\)

Correct answer:

\(\displaystyle \pi\)

Explanation:

Write the arc length formula for parametric curves.

\(\displaystyle L=\int_{a}^{b}\sqrt{\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2}\:dt\)

Find the derivatives.  The bounds are given in the problem statement.

\(\displaystyle \frac{dx}{dt}=-sin(t)\)

\(\displaystyle \frac{dy}{dt}=cos(t)\)

\(\displaystyle L=\int_{0}^{\pi}\sqrt{(-sin(t))^2+(cos(t))^2}\:dt\)

\(\displaystyle L=\int_{0}^{\pi}\sqrt{sin(t)^2+cos(t)^2}\:dt\)

\(\displaystyle L=\int_{0}^{\pi}1\:dt =[t]_{0}^{\pi}= \pi\)

Learning Tools by Varsity Tutors