Calculus 2 : Polar

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #31 : Polar Form

What is the polar form of ?

Possible Answers:

None of the above

Correct answer:

Explanation:

We can convert from rectangular to polar form by using the following trigonometric identities: and . Given , then:

Example Question #32 : Polar Form

What is the polar form of ?

Possible Answers:

Correct answer:

Explanation:

We can convert from rectangular to polar form by using the following trigonometric identities: and . Given , then:

 

Example Question #33 : Polar Form

What is the polar form of ?

Possible Answers:

Correct answer:

Explanation:

We can convert from rectangular to polar form by using the following trigonometric identities: and . Given , then:

Dividing both sides by ,

 

 

Example Question #44 : Polar

What is the polar form of ?

Possible Answers:

Correct answer:

Explanation:

We can convert from rectangular to polar form by using the following trigonometric identities: and . Given , then:

Example Question #34 : Polar Form

What is the polar form of ?

Possible Answers:

Correct answer:

Explanation:

We can convert from rectangular to polar form by using the following trigonometric identities: and . Given , then:

Dividing both sides by , we get:

Example Question #21 : Functions, Graphs, And Limits

What is the polar form of ?

Possible Answers:

Correct answer:

Explanation:

We can convert from rectangular to polar form by using the following trigonometric identities: and . Given , then:

 

Example Question #721 : Calculus Ii

What is the polar form of ?

Possible Answers:

Correct answer:

Explanation:

We can convert from rectangular to polar form by using the following trigonometric identities: and . Given , then:

 

Example Question #44 : Polar

What is the polar form of ?

Possible Answers:

Correct answer:

Explanation:

We can convert from rectangular to polar form by using the following trigonometric identities: and . Given , then:

Dividing both sides by , we get:

Example Question #722 : Calculus Ii

What is the polar form of ?

Possible Answers:

Correct answer:

Explanation:

We can convert from rectangular to polar form by using the following trigonometric identities: and . Given , then:

 

Example Question #723 : Calculus Ii

What is the polar form of ?

Possible Answers:

Correct answer:

Explanation:

We can convert from rectangular to polar form by using the following trigonometric identities: and .

Given , then:

 

 

Learning Tools by Varsity Tutors