Calculus 2 : Polar

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Polar

Rewrite the polar equation 

\displaystyle r = \sin ^{2} \theta

in rectangular form.

Possible Answers:

\displaystyle y ^{4} = \left (x^{2} +y^{2} \right )^{2}

\displaystyle y ^{3} = \left (x^{2} +y^{2} \right )^{2}

\displaystyle y ^{4} = \left (x^{3} +y^{3} \right )^{2}

\displaystyle y ^{3} = \left (x^{2} +y^{2} \right )^{4}

\displaystyle y ^{4} = \left (x^{2} +y^{2} \right )^{3}

Correct answer:

\displaystyle y ^{4} = \left (x^{2} +y^{2} \right )^{3}

Explanation:

\displaystyle r = \sin ^{2} \theta

\displaystyle r^{2} \cdot r = r^{2} \sin ^{2} \theta

\displaystyle r^{3} =\left ( r \sin \theta \right ) ^{2}

\displaystyle \left ( r^{2} \right )^{\frac{3}{2}} =\left ( r \sin \theta \right ) ^{2}

\displaystyle \left (x^{2} +y^{2} \right )^{\frac{3}{2}} =y ^{2}

\displaystyle \left [ \left (x^{2} +y^{2} \right )^{\frac{3}{2}} \right ] ^{2} =\left ( y ^{2} \right ) ^{2}

\displaystyle \left (x^{2} +y^{2} \right )^{3} = y ^{4}

or \displaystyle y ^{4} = \left (x^{2} +y^{2} \right )^{3}

Example Question #2 : Polar

Rewrite in polar form:

\displaystyle x^{2} = 3xy + 1

Possible Answers:

\displaystyle r =\sqrt{ \frac{1}{\cos ^{2} \theta - 3 \cos \theta\; \sin \theta }}

\displaystyle r =\sqrt{ \frac{1}{\cos \theta + 3 \sin \theta\; } }

\displaystyle r =\sqrt{ \frac{1}{\cos ^{2} \theta + 3 \cos \theta\; \sin \theta }}

\displaystyle r =\sqrt{ \frac{1}{\sin \theta + 3 \cos \theta\; } }

\displaystyle r = \sqrt{\frac{1}{\sin ^{2} \theta - 3 \cos \theta\; \sin \theta }}

Correct answer:

\displaystyle r =\sqrt{ \frac{1}{\cos ^{2} \theta - 3 \cos \theta\; \sin \theta }}

Explanation:

\displaystyle x^{2} = 3xy + 1

\displaystyle \left (r \cos \theta \right ) ^{2} = 3\left (r \cos \theta \right )\left (r \sin \theta \right ) + 1

\displaystyle r ^{2} \cos ^{2} \theta = 3 r^{2} \cos \theta\; \sin \theta \right ) + 1

\displaystyle r ^{2} \cos ^{2} \theta - 3 r^{2} \cos \theta\; \sin \theta \right ) = 1

\displaystyle r ^{2} \left ( \ \cos ^{2} \theta - 3 \cos \theta\; \sin \theta \right ) = 1

\displaystyle r ^{2} = \frac{1}{\cos ^{2} \theta - 3 \cos \theta\; \sin \theta }

\displaystyle r =\sqrt{ \frac{1}{\cos ^{2} \theta - 3 \cos \theta\; \sin \theta }}

Example Question #1 : Polar

Rewrite the polar equation 

\displaystyle r ^{2} + 1 = \cos \theta

in rectangular form.

Possible Answers:

\displaystyle \sqrt{x^{2} + y ^{2}} =\frac{ x}{{x^{2} + y ^{2}} }

\displaystyle \sqrt{x^{2} + y ^{2}} =\frac{ y}{{x^{2} + y ^{2}} +1}

\displaystyle \sqrt{x^{2} + y ^{2}} =\frac{ y}{x^{2} + y ^{2}}

\displaystyle \sqrt{x^{2} + y ^{2}} =\frac{ x}{{x^{2} + y ^{2}} +1}

\displaystyle \sqrt{x^{2} + y ^{2}} =\frac{x+ y}{{x^{2} + y ^{2}} +1}

Correct answer:

\displaystyle \sqrt{x^{2} + y ^{2}} =\frac{ x}{{x^{2} + y ^{2}} +1}

Explanation:

\displaystyle r ^{2} + 1 = \cos \theta

\displaystyle r\left ( r ^{2} + 1 \right )= r \cos \theta

\displaystyle \sqrt{x^{2} + y ^{2}} \left ( {x^{2} + y ^{2}} +1 \right ) = x

\displaystyle \sqrt{x^{2} + y ^{2}} =\frac{ x}{{x^{2} + y ^{2}} +1}

Example Question #1 : Polar

Give the polar form of the equation of the line with intercepts \displaystyle (0,4), (-6,0).

Possible Answers:

\displaystyle r = 12\tan \theta

\displaystyle r = \frac{12}{2 \sin \theta - 3 \cos \theta }

\displaystyle r = \frac{12}{3 \sin \theta - 2 \cos \theta }

\displaystyle r = \frac{12}{ \tan \theta }

\displaystyle r = \frac{12}{3 \sin \theta + 2 \cos \theta }

Correct answer:

\displaystyle r = \frac{12}{3 \sin \theta - 2 \cos \theta }

Explanation:

This line has slope \displaystyle \frac{4-0}{0- (-6)} = \frac{2}{3} and \displaystyle y-intercept \displaystyle (0.4), so its Cartesian equation is \displaystyle y = \frac{2}{3}x + 4.

By substituting, we can rewrite this:

\displaystyle r \sin \theta = \frac{2}{3}r \cos \theta + 4

\displaystyle r \sin \theta - \frac{2}{3}r \cos \theta = 4

\displaystyle 3 r \sin \theta - 2 r \cos \theta = 12

\displaystyle r \left ( 3 \sin \theta - 2 \cos \theta \right )= 12

\displaystyle r = \frac{12}{3 \sin \theta - 2 \cos \theta }

Example Question #5 : Polar

Give the rectangular coordinates of the point with polar coordinates 

\displaystyle \left ( -4 , \frac{\pi }{3}\right ).

Possible Answers:

\displaystyle \left ( -2, -2 \sqrt{3} \right )

\displaystyle \left ( -2 \sqrt{3} , -2\right )

\displaystyle \left ( -2 \sqrt{3} , 2\right )

\displaystyle \left ( 2 \sqrt{3} , -2\right )

\displaystyle \left ( 2, -2 \sqrt{3} \right )

Correct answer:

\displaystyle \left ( -2, -2 \sqrt{3} \right )

Explanation:

\displaystyle x = r \cos \theta = -4 \cos \frac{\pi}{3} = -4 \cdot \frac{1}{2} = -2

\displaystyle y = r \sin \theta = -4 \sin \frac{\pi}{3} = -4 \cdot \frac{ \sqrt{3}}{2} = -2 \sqrt{3}

The point will have rectangular coordinates \displaystyle \left (- 2, -2 \sqrt{3} \right ).

Example Question #6 : Polar

What would be the equation of the parabola \displaystyle \small y=x^{2} in polar form?

Possible Answers:

\displaystyle \small r=cot\theta cos\theta

\displaystyle \small r=\theta ^{2}

\displaystyle \small r=tan\theta sec\theta

\displaystyle \small \small \small r=tan\theta sin\theta

\displaystyle \small \small r=cot\theta csc\theta

Correct answer:

\displaystyle \small r=tan\theta sec\theta

Explanation:

We know \displaystyle \small y=rsin\theta and \displaystyle \small x=rcos\theta.

Subbing that in to the equation \displaystyle \small y=x^{2} will give us \displaystyle \small rsin\theta=r^{2}cos^{2}\theta.

Multiplying both sides by \displaystyle \small 1/(rcos^{2}\theta) gives us 

\displaystyle \small \small \small \small \small r=sin\theta /cos^{2}\theta=tan\theta/cos\theta=tan\theta\cdot sec\theta.

Example Question #7 : Polar

A point in polar form is given as \displaystyle \left(3,\frac{\pi}{3}\right).

Find its corresponding \displaystyle (x,y) coordinate.

Possible Answers:

\displaystyle \left(\frac{3}{2},\frac{3\sqrt3}{2}\right)

\displaystyle \left(\frac{3\sqrt3}{2},\frac{3}{2}\right)

\displaystyle (0,3)

\displaystyle \left(\frac{3}{2},\frac{3}{2}\right)

\displaystyle \left(3,\frac{3\sqrt3}{2}\right)

Correct answer:

\displaystyle \left(\frac{3}{2},\frac{3\sqrt3}{2}\right)

Explanation:

To go from polar form to cartesion coordinates, use the following two relations.

\displaystyle x=rcos(\theta)

\displaystyle y=rsin(\theta)

In this case, our \displaystyle r is \displaystyle 3 and our \displaystyle \theta is \displaystyle \frac{\pi}{3}.

Plugging those into our relations we get 

\displaystyle x=\frac{3}{2}

\displaystyle y=\frac{3\sqrt3}{2}

which gives us our \displaystyle (x,y) coordinate.

Example Question #8 : Polar

What is the magnitude and angle (in radians) of the following cartesian coordinate?

\displaystyle (3,4)

Give the answer in the format below.

\displaystyle (r,\theta)

Possible Answers:

\displaystyle (3,1.04)

\displaystyle (12,0.707)

\displaystyle (5,0.927)

\displaystyle (5,0.643)

\displaystyle (4,0.927)

Correct answer:

\displaystyle (5,0.927)

Explanation:

Although not explicitly stated, the problem is asking for the polar coordinates of the point \displaystyle (3,4). To calculate the magnitude, \displaystyle r, calculate the following:

\displaystyle r=\sqrt{x^2+y^2}

\displaystyle r=5

To calculate \displaystyle \theta, do the following:

\displaystyle \theta=tan^{-1}\left(\frac{y}{x}\right) in radians. (The problem asks for radians)

\displaystyle \theta = 0.927

 

Example Question #1 : Polar

What is the following coordinate in polar form?

\displaystyle (-2,-5)

Provide the angle in degrees.

Possible Answers:

\displaystyle (10,248)

\displaystyle (\sqrt{29},248)

\displaystyle (16,112)

\displaystyle (\sqrt{29},68)

\displaystyle (\sqrt{29},202)

Correct answer:

\displaystyle (\sqrt{29},248)

Explanation:

To calculate the polar coordinate, use

\displaystyle r=\sqrt{x^2+y^2}

\displaystyle r=\sqrt{29}

\displaystyle \theta=tan^{-1}\left(\frac{y}{x}\right)=68

However, keep track of the angle here. 68 degree is the mathematical equivalent of the expression, but we know the point (-2,-5) is in the 3rd quadrant, so we have to add 180 to it to get 248.

Some calculators might already have provided you with the correct answer.

\displaystyle \theta=248.

Example Question #1 : Polar Form

What is the equation \displaystyle y=2x^{2} in polar form?

Possible Answers:

\displaystyle r=\frac{1}{2}\sin \theta}{\tan \theta

\displaystyle r=\frac{1}{2}\sin \theta}{\sec \theta

\displaystyle r=\frac{1}{2}\sin \theta}{\cos \theta

\displaystyle r=\frac{1}{2}\tan \theta}{\sec \theta

\displaystyle r=\frac{1}{2}\cos \theta}{\tan \theta

Correct answer:

\displaystyle r=\frac{1}{2}\tan \theta}{\sec \theta

Explanation:

We can convert from rectangular form to polar form by using the following identities: \displaystyle y=r\sin \theta and \displaystyle x=r\cos \theta. Given \displaystyle y=2x^{2}, then \displaystyle r\sin \theta=2(r\cos \theta )^{2}=2r^{2}\cos^{2} \theta.

\displaystyle r\sin \theta=2(r\cos \theta )^{2}=2r^{2}\cos^{2} \theta. Dividing both sides by \displaystyle r\cos \theta,

\displaystyle \tan \theta=2r\cos \theta

\displaystyle \frac{\tan \theta}{\cos \theta}=2r

\displaystyle \tan \theta}{\sec \theta=2r

\displaystyle \frac{1}{2}\tan \theta}{\sec \theta=r

 

Learning Tools by Varsity Tutors