Calculus 2 : Polar

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #171 : Polar

Convert the cartesian point  into polar coordinates.

Possible Answers:

Correct answer:

Explanation:

Cartesian coordinates are written in the form .

In this problem,  and .

Using the conversion formulas  and ,

The polar point is .

Example Question #172 : Polar

Convert the cartesian point  into polar coordinates.

Possible Answers:

Correct answer:

Explanation:

Cartesian coordinates are written in the form .

In this problem,  and .

Using the conversion formulas  and ,

The polar point is .

Example Question #173 : Polar

Convert the cartesian point  into polar coordinates.

Possible Answers:

Correct answer:

Explanation:

Cartesian coordinates are written in the form .

In this problem,  and .

Using the conversion formulas  and ,

The polar point is .

Example Question #174 : Polar

Convert  into polar coordinates.

Possible Answers:

Correct answer:

Explanation:

Substituting the conversion formulas  and  into the cartesian equation,

we get

Example Question #171 : Polar

Convert  into polar coordinates.

Possible Answers:

Correct answer:

Explanation:

Substituting the conversion formulas  and  into the cartesian equation,

we get

Using the identity, 

 

Example Question #172 : Polar

Convert  into polar coordinates.

Possible Answers:

Correct answer:

Explanation:

Substituting the conversion formulas  and  into the cartesian equation,

we get

Using the identity, 

Example Question #171 : Polar

Convert  into cartesian coordinates.

Possible Answers:

Correct answer:

Explanation:

To make converting this expression easier, we will multiply both sides of the equation by , giving us

Substituting the conversion formulas  and  into the polar equation, we get

Example Question #174 : Polar

Convert  into cartesian coordinates.

Possible Answers:

Correct answer:

Explanation:

To make converting this expression easier, we will multiply both sides of the equation by , giving us

Substituting the conversion formulas  and  into the polar equation, we get

Example Question #25 : Polar Calculations

Convert  into cartesian coordinates.

Possible Answers:

Correct answer:

Explanation:

To make converting this expression easier, we will multiply both sides of the equation by , giving us

Substituting the conversion formulas  and  into the polar equation, we get

Example Question #21 : Polar Calculations

Convert  into polar coordinates.

Possible Answers:

Correct answer:

Explanation:

Screen shot 2016 01 02 at 10.52.46 am

Learning Tools by Varsity Tutors