All Calculus 2 Resources
Example Questions
Example Question #342 : Finding Integrals
Evaluate.
Answer not listed.
In order to evaluate this integral, first find the antiderivative of
If then
If then
If then
If then
If then
If then
If then
In this case, .
The antiderivative is .
Example Question #343 : Finding Integrals
Evaluate.
Answer not listed.
In order to evaluate this integral, first find the antiderivative of
If then
If then
If then
If then
If then
If then
If then
In this case, .
The antiderivative is .
Example Question #344 : Finding Integrals
Evaluate.
Answer not listed.
In order to evaluate this integral, first find the antiderivative of
If then
If then
If then
If then
If then
If then
If then
In this case, .
The antiderivative is .
Example Question #345 : Finding Integrals
Evaluate.
Answer not listed.
In order to evaluate this integral, first find the antiderivative of
If then
If then
If then
If then
If then
If then
If then
In this case, .
The antiderivative is .
Example Question #62 : Indefinite Integrals
Evaluate.
Answer not listed
In order to evaluate this integral, first find the antiderivative of
If then
If then
If then
If then
If then
If then
If then
In this case, .
The antiderivative is .
Example Question #347 : Finding Integrals
Evaluate.
Answer not listed.
In order to evaluate this integral, first find the antiderivative of
If then
If then
If then
If then
If then
If then
If then
In this case, .
The antiderivative is .
Example Question #348 : Finding Integrals
Evaluate.
Answer not listed.
In order to evaluate this integral, first find the antiderivative of
If then
If then
If then
If then
If then
If then
If then
In this case, .
The antiderivative is .
Example Question #71 : Indefinite Integrals
Evaluate.
Answer not listed.
In order to evaluate this integral, first find the antiderivative of
If then
If then
If then
If then
If then
If then
If then
In this case, .
The antiderivative is .
Example Question #72 : Indefinite Integrals
Evaluate.
Answer not listed.
then
If then
If then
If then
If then
If then
If then
In this case, .
The antiderivative is .
Example Question #351 : Finding Integrals
First, make the fraction three separate terms: . Now, integrate as normal, remembering to raise the exponent by 1 and then also putting that result on the denominator: . Remember to add a C at the end because it is an indefinite integral: .
Certified Tutor