All Calculus 2 Resources
Example Questions
Example Question #54 : Indefinite Integrals
Evaluate.
Answer not listed.
In order to evaluate this integral, first find the antiderivative of
If then
If then
If then
If then
If then
If then
If then
In this case, .
The antiderivative is .
Example Question #53 : Indefinite Integrals
Evaluate.
Answer not listed.
In order to evaluate this integral, first find the antiderivative of
If then
If then
If then
If then
If then
If then
If then
In this case, .
The antiderivative is .
Example Question #56 : Indefinite Integrals
Evaluate.
Answer not listed.
In order to evaluate this integral, first find the antiderivative of
If then
If then
If then
If then
If then
If then
If then
In this case, .
The antiderivative is .
Example Question #57 : Indefinite Integrals
Evaluate.
Answer not listed.
In order to evaluate this integral, first find the antiderivative of
If then
If then
If then
If then
If then
If then
If then
In this case, .
The antiderivative is .
Example Question #58 : Indefinite Integrals
Evaluate.
Answer not listed.
In order to evaluate this integral, first find the antiderivative of
If then
If then
If then
If then
If then
If then
If then
In this case, .
The antiderivative is .
Example Question #59 : Indefinite Integrals
Evaluate.
Answer not listed
In order to evaluate this integral, first find the antiderivative of
If then
If then
If then
If then
If then
If then
If then
In this case, .
The antiderivative is .
Example Question #54 : Indefinite Integrals
Evaluate.
Answer not listed
In order to evaluate this integral, first find the antiderivative of
If then
If then
If then
If then
If then
If then
If then
In this case, .
The antiderivative is .
Example Question #681 : Integrals
Integrate:
To solve the integral, we must use integration by parts, which states that
We must designate a u and a dv:
The derivative and integral of u and dv, respectively, were found using the following rules:
,
Using the above formula, we can rewrite the integral:
We must use integration by parts again, because we have an integral that cannot be solved using other methods.
This time, using the same integration and derivation rules, we have
Using the same formula above, we get
Integrating, we get
The same integration rule above was used.
Rewriting, our final answer is
Example Question #332 : Finding Integrals
Evaluate.
Answer not listed.
In order to evaluate this integral, first find the antiderivative of
If then
If then
If then
If then
If then
If then
If then
In this case, .
The antiderivative is .
Example Question #682 : Integrals
Evaluate.
Answer not listed.
In order to evaluate this integral, first find the antiderivative of
If then
If then
If then
If then
If then
If then
If then
In this case, .
The antiderivative is .
Certified Tutor
Certified Tutor