All Calculus 1 Resources
Example Questions
Example Question #671 : Other Differential Functions
Find the derivative of the following:
If , then the derivative is .
If , the the derivative is .
If , then the derivative is .
If , then the derivative is .
If , then the derivative is .
There are many other rules for the derivatives for trig functions.
If , then the derivative is . This is known as the chain rule.
In this case, we must find the derivative of the following:
That is done by doing the following:
Therefore, the answer is:
Example Question #672 : Other Differential Functions
Find the derivative of the following:
If , then the derivative is .
If , the the derivative is .
If , then the derivative is .
If , then the derivative is .
If , then the derivative is .
There are many other rules for the derivatives for trig functions.
If , then the derivative is . This is known as the chain rule.
In this case, we must find the derivative of the following:
That is done by doing the following:
Therefore, the answer is:
Example Question #673 : Other Differential Functions
Find the derivative of the following:
If , then the derivative is .
If , the the derivative is .
If , then the derivative is .
If , then the derivative is .
If , then the derivative is .
There are many other rules for the derivatives for trig functions.
If , then the derivative is . This is known as the chain rule.
In this case, we must find the derivative of the following:
That is done by doing the following:
Therefore, the answer is:
Example Question #861 : Functions
Determine the slope of the line that is tangent to the function at the point
The slope of the tangent can be found by taking the derivative of the function and evaluating the value of the derivative at a point of interest.
We'll need to make use of the following derivative rule(s):
Derivative of a natural log:
Trigonometric derivative:
Note that u may represent large functions, and not just individual variables!
Taking the derivative of the function at the point
The slope of the tangent is
Example Question #675 : Other Differential Functions
Determine the slope of the line that is tangent to the function at the point
The slope of the tangent can be found by taking the derivative of the function and evaluating the value of the derivative at a point of interest.
We'll need to make use of the following derivative rule(s):
Derivative of a natural log:
Trigonometric derivative:
Note that u may represent large functions, and not just individual variables!
Taking the derivative of the function at the point
The slope of the tangent is
Example Question #676 : Other Differential Functions
Determine the slope of the line that is tangent to the function at the point
The slope of the tangent can be found by taking the derivative of the function and evaluating the value of the derivative at a point of interest.
We'll need to make use of the following derivative rule(s):
Trigonometric derivative:
Note that u may represent large functions, and not just individual variables!
Taking the derivative of the function at the point
The slope of the tangent is
Example Question #862 : Functions
Determine the slope of the line that is tangent to the function at the point
The slope of the tangent can be found by taking the derivative of the function and evaluating the value of the derivative at a point of interest.
We'll need to make use of the following derivative rule(s):
Trigonometric derivative:
Note that u may represent large functions, and not just individual variables!
Taking the derivative of the function at the point
The slope of the tangent is
Example Question #678 : Other Differential Functions
Determine the slope of the line that is tangent to the function at the point
The slope of the tangent can be found by taking the derivative of the function and evaluating the value of the derivative at a point of interest.
Taking the derivative of the function at the point
The slope of the tangent is
Example Question #679 : Other Differential Functions
Determine the slope of the line that is tangent to the function at the point
The slope of the tangent can be found by taking the derivative of the function and evaluating the value of the derivative at a point of interest.
We'll need to make use of the following derivative rule(s):
Trigonometric derivative:
Note that u may represent large functions, and not just individual variables!
Taking the derivative of the function at the point
The slope of the tangent is
Example Question #680 : Other Differential Functions
Determine the slope of the line that is tangent to the function at the point
The slope of the tangent can be found by taking the derivative of the function and evaluating the value of the derivative at a point of interest.
We'll need to make use of the following derivative rule(s):
Derivative of an exponential:
Trigonometric derivative:
Note that u may represent large functions, and not just individual variables!
Taking the derivative of the function at the point
The slope of the tangent is