Calculus 1 : How to find area of a region

Study concepts, example questions & explanations for Calculus 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #61 : How To Find Area Of A Region

Integrate \displaystyle 2xcos(x^2)dx

Possible Answers:

\displaystyle -sin(x^2)

\displaystyle -sin(x^2)+C

\displaystyle sin(2x)+C

\displaystyle sin(x^2)+C

\displaystyle sin(x^2)

Correct answer:

\displaystyle sin(x^2)+C

Explanation:

Let \displaystyle u=x^2\rightarrow du=2xdx

Therefore by u substitution we are able to integrate thus finding the area under the curve. Once you have integrated remember to plug your original variables back into the equation:

\displaystyle \\ \int 2xcos(x^2)dx\\ \\=\int cos(u)du\\ \\=sin(u)+C\\ \\=sin(x^2)+C

Example Question #4051 : Calculus

Find the area between the curves \displaystyle y=\sqrt{x} and \displaystyle y=x^3.

Possible Answers:

\displaystyle \frac{5}{12}

\displaystyle 0

\displaystyle \frac{-5}{12}

\displaystyle 1

Correct answer:

\displaystyle \frac{5}{12}

Explanation:

Graph1

 Looking at the graph, we see that the graphs intersect at the point \displaystyle (1,1) with \displaystyle y=\sqrt{x} on top.

Therefore, our integral to find the area by partitioning the x-axis looks like 

\displaystyle \int_{0}^{1} [ \sqrt{x}-x^3]dx = \frac{5}{12}.

Example Question #61 : How To Find Area Of A Region

Find the area between \displaystyle x=-y^2+1 and the \displaystyle y-axis.  

Possible Answers:

\displaystyle \frac{1}{3}

\displaystyle 1

\displaystyle \frac{2}{3}

\displaystyle \frac{4}{3}

Correct answer:

\displaystyle \frac{4}{3}

Explanation:

First we find that the equation crosses the y-axis at y=-1, 1.

Partitioning the y-axis, we get the area is equal to 

\displaystyle \int_{-1}^{1}(1-y^2) dy=\frac{4}{3}.

Example Question #4056 : Calculus

Calculate the area between the sine curve and the cosine curve for

\displaystyle 0 \leq x \leq \frac{\pi}{2}.

Possible Answers:

\displaystyle \frac{-4}{\sqrt2}

\displaystyle 2\sqrt2-2

\displaystyle 2

\displaystyle 2-4\sqrt2

\displaystyle 0

Correct answer:

\displaystyle 2\sqrt2-2

Explanation:

To find the area between the 2 trigonometric waves, we have to look at two different regions between 0 and \displaystyle \frac{\pi}{2}.

Cosine is above sine from 0 to \displaystyle \frac{\pi}{4}, and sine is above cosine from \displaystyle \frac{\pi}{4} to \displaystyle \frac{\pi}{2}:

Calc area 1

Written as an integral, this area can be represented as follows:

\displaystyle \int_{0}^{\frac{\pi}{4}}cosx - sinx dx + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}}sinx - cosx dx

Integrating yields:

\displaystyle sinx - (-cosx) from 0 to \displaystyle \frac{\pi}{4} and \displaystyle -cosx - sinx from \displaystyle \frac{\pi}{4} to \displaystyle \frac{\pi}{2}

Evaluate:

\displaystyle sin\left(\frac{\pi}{4}\right)+cos\left(\frac{\pi}{4}\right)-[sin(0)+cos(0)] + \left[-cos\left(\frac{\pi}{2}\right)-sin\left(\frac{\pi}{2}\right)\right]-\left[-cos\left(\frac{\pi}{4}\right)-sin\left(\frac{\pi}{4}\right)\right]

\displaystyle \left[\frac{1}{\sqrt2}+\frac{1}{\sqrt2}\right]-\left[(0+1) \right ] + [0-1]\left(-\frac{1}{\sqrt2}-\frac{1}{\sqrt2}\right)

\displaystyle \frac{2}{\sqrt2}-1-1+\frac{2}{\sqrt2}

\displaystyle \frac{4}{\sqrt2}-2 rationalizing the denominator:

\displaystyle \frac{4\sqrt2}{2}-2=2\sqrt2 -2

 

Example Question #4057 : Calculus

Find the area between the functions \displaystyle f(x)=3x^2 + 1 and \displaystyle g(x)=5-x^2.

Possible Answers:

\displaystyle \frac{16}{3}

\displaystyle \frac{20}{3}

\displaystyle 0

\displaystyle 23

\displaystyle 8

Correct answer:

\displaystyle \frac{16}{3}

Explanation:

The area between the two curves goes between the two points of intersection:

Calc area 2

To figure out the left and right bounds of this region, solve the system of equations \displaystyle y=f(x), y=g(x) by setting the two equations equal to each other and solving for x:

\displaystyle -x^2 +5 = 3x^2 + 1 add \displaystyle x^2 to both sides

\displaystyle 5=4x^2 + 1 subtract 1 from both sides

\displaystyle 4=4x^2 divide by 4

\displaystyle 1=x^2

The solutions are -1 and 1, so we're finding the area for \displaystyle -1\leq x \leq1.

For this region, the function \displaystyle -x^2 + 5 is above \displaystyle 3x^2 + 1, so our integral looks like this:

\displaystyle \int_{-1}^{1} -x^2+5- (3x^2 + 1)dx

We can simplify before solving to \displaystyle \int_{-1}^{1}-4x^2 +4 dx and continue solving.

\displaystyle -\frac{4}{3}x^3 +4x from -1 to 1

\displaystyle -\frac{4}{3}(1)^3 + 4(1) - \left[-\frac{4}{3}(-1)^3 + 4(-1)\right]

\displaystyle -\frac{4}{3}+4 -\left[\frac{4}{3}-4\right]=-\frac{4}{3}-\frac{4}{3}+4+4 = \frac{16}{3}

 

Example Question #4053 : Calculus

Find the area between \displaystyle f(x)=5-x and \displaystyle g(x)=\frac{6}{x}

Possible Answers:

\displaystyle 1.6589

\displaystyle 12.2506

\displaystyle 0.0672

\displaystyle 5.0672

\displaystyle 0.9872

Correct answer:

\displaystyle 0.0672

Explanation:

First, figure out the boundaries of the region between the two curves. To do this, set the two functions equal to each other to determine where the curves intersect:

\displaystyle 5-x = \frac{6}{x} multiply both sides by x

\displaystyle 5x-x^2 = 6

This can be re-written in more standard quadratic form:

\displaystyle x^2 -5x +6 = 0

This can be factored as \displaystyle (x-2)(x-3)=0, so our two solutions are 2 and 3. We are then evaluating the definite integral between 2 and 3. In this region, the equation \displaystyle 5-x is greater. Evaluate:

\displaystyle \int_{2}^{3}5-x-\frac{6}{x}dx = 5x - \frac{1}{2}x^2 -6lnxbetween 2 and 3

\displaystyle 5(3)-\frac{1}{2}(3)^2 - 6ln(3) - \left[5(2)-\frac{1}{2}(2)^2-6ln(2)\right]

\displaystyle 15 - 4.5 - 6.5917 - [10-2-4.1589]\approx 0.0672

 

Example Question #62 : Area

Find the dot product \displaystyle \left< 5,6,-1\right> and \displaystyle \left< -2,3,9\right>.

Possible Answers:

\displaystyle 10

\displaystyle 1

None of these

\displaystyle -1

\displaystyle 0

Correct answer:

\displaystyle -1

Explanation:

The way to find a dot product is to multiply the first number of one vector with the first number in the other. Then you do the same with the second and third numbers in each vector. Then you add up the three values and the answer is the dot product.

\displaystyle (5)(-2)+(6)(3)+(-1)(9)

\displaystyle =-10+18-9

\displaystyle =-1

Example Question #61 : Area

Find the dot product of \displaystyle \left< 3,0,-5\right> and \displaystyle \left< 2,15,-4\right>.

Possible Answers:

\displaystyle 26

None of these

\displaystyle -5

\displaystyle 20

\displaystyle 0

Correct answer:

\displaystyle 26

Explanation:

The way to find a dot product is to multiply the first number of one vector with the first number in the other. Then you do the same with the second and third numbers in each vector. Then you add up the three values and the answer is the dot product.

\displaystyle (3)(2)+(0)(15)+(-5)(-4)

\displaystyle =6+0+20

\displaystyle =26

Example Question #63 : Area

Find the indefinite integral

\displaystyle \int \left ( -9t^2+14t-2\right )dt

Possible Answers:

\displaystyle -3t^3+7t^2-2t+C

\displaystyle 42t

\displaystyle 0

\displaystyle 3t^3-7t^2+2t+C

\displaystyle t+C

Correct answer:

\displaystyle -3t^3+7t^2-2t+C

Explanation:

Recall the power rule for integration:

Break apart the integral into three integrals:

\displaystyle \int \left ( -9t^2+14t-2\right )dt= \int -9t^2dt+\int 14tdt-\int2dt

Integrate term by term,

\displaystyle \int(-9t^2)dt=-3t^3 

\displaystyle \int(14t)dt=7t^2

\displaystyle \int-2dt=-2t

Now add the constant of integration to the expression.

\displaystyle =-3t^3+7t^2-2t+C

Example Question #143 : Regions

Find the indefinite integral below

\displaystyle \int \frac{3z^2+12z-9}{z^4}dz

Possible Answers:

\displaystyle (-3/z^4)-(16/z^2)+(3/z^3)+C

\displaystyle (-3/z)+C

\displaystyle (-3/z)-(6/z^2)+(3/z^3)+C

\displaystyle (6/z^2)+(3/z^3)+C

\displaystyle (-3/z)-(6/z^2)+(53/z^2)+C

Correct answer:

\displaystyle (-3/z)-(6/z^2)+(3/z^3)+C

Explanation:

First, break apart the fraction into three fractions with each term having \displaystyle z^4 in its denominator.

\displaystyle \int \frac{3z^2+12z-9}{z^4}dz=\int \frac{3z^2}{z^4}+\frac{12z}{z^4}-\frac{9}{z^4}dz

Then cancel the variables where you can and integrate term by term.  If you are left with any variables in the denominator then put them in the numerator with a negative sign.  

You get: 

\displaystyle \int3z^{-2}dz+\int (12z^{-3})dz-\int9z^{-4}dz 

Integrate these by the power rule,

\displaystyle \int x^ndx=\frac{x^{n+1}}{n+1}

We get:

 \displaystyle =(-3/z)-(6/z^2)+(3/z^3)+C

Learning Tools by Varsity Tutors