Calculus 1 : Rate

Study concepts, example questions & explanations for Calculus 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1081 : Rate

The population of a town grows exponentially from \displaystyle 200K to \displaystyle 800K in \displaystyle 3yrs.  What is the population growth constant?

Possible Answers:

\displaystyle k=4

\displaystyle k=3

\displaystyle k=\frac{ln(4)}{3}

\displaystyle k=\frac{ln(2)}{3}

Correct answer:

\displaystyle k=\frac{ln(4)}{3}

Explanation:

Exponential growth is modeled by the equation\displaystyle A=Pe^{kt}

where \displaystyle A is the final amount, \displaystyle P is the inital amount, \displaystyle k is the growth constant and \displaystyle t is time.

In this problem, \displaystyle A=800K\displaystyle P=200K and \displaystyle t=3.  Substituting these variables into the growth equation the solving for \displaystyle k gives us

\displaystyle 800,000=200,000e^{3k}

\displaystyle \frac{800,000}{200,000}=e^{3k}

\displaystyle 4=e^{3k}

\displaystyle ln(4)=ln(e^{3k})

\displaystyle ln(4)=3k

\displaystyle k=\frac{ln(4)}{3}

 

 

Example Question #1082 : Rate

Cobalt-60 has a half-life of \displaystyle 5.27yrs.  What is the decay constant of Cobalt-60? 

Possible Answers:

\displaystyle k=-0.5

\displaystyle k=\frac{ln(0.5)}{60}

\displaystyle k=\frac{ln(60)}{5.27}

\displaystyle k=\frac{ln(0.5)}{5.27}

Correct answer:

\displaystyle k=\frac{ln(0.5)}{5.27}

Explanation:

The half-life of an isotope is the time it takes for half the isotope to disappear.  Isotopes decay exponentially.

Exponential decay is also modeled by the equation \displaystyle A=Pe^{kt}

where \displaystyle A is the final amount, \displaystyle P is the inital amount, \displaystyle k is the growth constant and \displaystyle t is time.

Since half the isotope has disappeared, the final amount \displaystyle A is half the inital amount \displaystyle P, or  \displaystyle \frac{A}{P}=0.5.

In this problem, \displaystyle t=5.27yrs.

Substituting these variables into the exponential equation and solving for \displaystyle k gives us

\displaystyle A=Pe^{kt}\Rightarrow \frac{A}{P}=e^{kt}

\displaystyle 0.5=e^{5.27k}

\displaystyle ln(0.5)=ln(e^{5.27k})

\displaystyle ln(0.5)=5.27k

\displaystyle k=\frac{ln(0.5)}{5.27}

Example Question #1083 : Rate

The number of cats double every \displaystyle 64dys.  How many cats will there be after \displaystyle 1 yrif there are \displaystyle 2 cats initially?

Possible Answers:

\displaystyle A\approx 64

\displaystyle A\approx 365

\displaystyle A\approx 104

\displaystyle A\approx 730

Correct answer:

\displaystyle A\approx 104

Explanation:

Exponential growth is modeled by the equation \displaystyle A=Pe^{kt}

where \displaystyle A is the final amount, \displaystyle P is the inital amount, \displaystyle k is the growth constant and \displaystyle t is time.

After \displaystyle 64dys, the number of cats has doubled, or the final amount \displaystyle A is double the inital amount \displaystyle P, or  \displaystyle \frac{A}{P}=2.

In this problem, \displaystyle t=64.

Substituting these variables into the exponential equation and solving for \displaystyle k gives us

\displaystyle A=Pe^{kt}\Rightarrow \frac{A}{P}=e^{kt}

\displaystyle 2=e^{64k}

\displaystyle ln(2)=ln(e^{64k})

\displaystyle ln(2)=64k

\displaystyle k=\frac{ln(2)}{64}

To find the number cats after \displaystyle 1 year, \displaystyle P=2\displaystyle k=\frac{ln(2)}{64}, and \displaystyle t=365

\displaystyle A=Pe^{kt}=2e^{\frac{ln(2)}{64}*365}\approx 104

 

 

Example Question #1084 : Rate

The number of students enrolled in college has increased by \displaystyle 37\% every year since \displaystyle 2003.  If  \displaystyle 460K students enrolled in \displaystyle 2003, how many student enrolled in \displaystyle 2013?

Possible Answers:

\displaystyle y=2

\displaystyle y=460M

\displaystyle y=10.7M

\displaystyle y=10.3K

Correct answer:

\displaystyle y=10.7M

Explanation:

The exponential growth is modeled by the equation \displaystyle y=a(1+r)^{t}

where \displaystyle y is the final amount, \displaystyle a is the inital amount, \displaystyle r is the growth rate and \displaystyle t is time.

In this problem, \displaystyle a=460K\displaystyle r=0.37, and \displaystyle t=2013-2003=10.  Substituting these values into the equation gives us

\displaystyle y=460,000(1+0.37)^{10}=10.7M

 

Example Question #1085 : Rate

The number of CD players owned has decreased by \displaystyle 15\% annually since \displaystyle 2008.  If  \displaystyle 3M people owned CD players in \displaystyle 2008, how many people owned CD players in  \displaystyle 2014?

Possible Answers:

\displaystyle y=3K

\displaystyle y=1.13M

\displaystyle y=390K

\displaystyle y=11M

Correct answer:

\displaystyle y=1.13M

Explanation:

The exponential growth is modeled by the equation \displaystyle y=a(1+r)^{t}

where \displaystyle y is the final amount, \displaystyle a is the inital amount, \displaystyle r is the growth rate and \displaystyle t is time.

In this problem, \displaystyle a=3M and \displaystyle t=2014-2008=6. \displaystyle r=-0.15 because the rate is decreasing.  Substituting these values into the equation gives us

\displaystyle y=3,000,000(1-0.15)^{6}=1.13M

 

Example Question #1086 : Rate

You deposit \displaystyle \$1500 into your savings account.  After \displaystyle 8 yrs, your account has \displaystyle \$6500 in it.  What is the interest rate of this account if the account was untouched during the \displaystyle 8 yrs?  

Possible Answers:

\displaystyle r=2.38\%

\displaystyle r=20.12\%

\displaystyle r=40.76\%

\displaystyle r=0.85\%

Correct answer:

\displaystyle r=20.12\%

Explanation:

The exponential growth is modeled by the equation \displaystyle y=a(1+r)^{t}

where \displaystyle y is the final amount, \displaystyle a is the inital amount, \displaystyle r is the growth rate and \displaystyle t is time.

In this problem, \displaystyle a=\$1500\displaystyle y=\$6500 and \displaystyle t=8 yrs.  Substituting these variables into the growth equation and solving for r gives us

\displaystyle 6500=1500(1+r)^{8}

\displaystyle \frac{13}{3}=(1+r)^{8}

\displaystyle \sqrt[8]{\frac{13}{3}}=\sqrt[8]{(1+r)^{8}}

\displaystyle \sqrt[8]{\frac{13}{3}}=1+r

\displaystyle 1+r=1.2012

\displaystyle r=0.2012=20.12\%

Example Question #1087 : Rate

Find the direct constant of proportionality of \displaystyle f(x)=e^t-cos(2t) from \displaystyle t:(0,\pi)

Possible Answers:

\displaystyle \frac{e^\pi+1}{\pi}

\displaystyle \frac{-e^\pi+1}{\pi}

\displaystyle \frac{e^\pi}{\pi}

\displaystyle \frac{e^\pi-1}{\pi}

Correct answer:

\displaystyle \frac{e^\pi-1}{\pi}

Explanation:

To find direct constant of proportionality \displaystyle k, you need to find the slope of the line between the two points at \displaystyle t=0 and \displaystyle t=\pi. To do so we use the formula:

\displaystyle f(x)=e^t-cos(2t)

\displaystyle k=\frac{f(\pi)-f(0)}{\pi -0}=\frac{(e^\pi-cos(2*\pi))-(e^0-cos(0))}{\pi}=\frac{e^\pi-1}{\pi}

Example Question #1081 : Rate

The rate of growth of the population of Reindeer in Norway is proportional to the population. The population increased from 9876 to 10381 between 2013 and 2015. What is the expected population in 2030?

Possible Answers:

\displaystyle 49362

\displaystyle 38914

\displaystyle 15150

\displaystyle 53880

\displaystyle 42581

Correct answer:

\displaystyle 15150

Explanation:

We're told that the rate of growth of the population is proportional to the population itself, meaning that this problem deals with exponential growth/decay. The population can be modeled thusly:

\displaystyle p(t)=p_0e^{kt}

Where \displaystyle p_0 is an initial population value, and \displaystyle k is the constant of proportionality.

Since the population increased from 9876 to 10381 between 2013 and 2015, we can solve for this constant of proportionality:

\displaystyle 10381=9876e^{k(2015-2013)}

\displaystyle \frac{10381}{9876}=e^{2k}

\displaystyle 2k=ln(\frac{10381}{9876})

\displaystyle k=\frac{ln(\frac{10381}{9876})}{2}=0.0252

Using this, we can calculate the expected value from 2015 to 2030:

\displaystyle P=10381e^{(2030-2015)(0.0252)} \approx 15150

Learning Tools by Varsity Tutors