Calculus 1 : Differential Functions

Study concepts, example questions & explanations for Calculus 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1553 : Calculus

Which of the following is an inflection point for the function \displaystyle f(x)=x^3+21x^2+10?

Possible Answers:

\displaystyle (2,102)

\displaystyle (-3,172)

\displaystyle (172,-3)

\displaystyle (696,-7)

\displaystyle (-7,696)

Correct answer:

\displaystyle (-7,696)

Explanation:

The points of inflection of a function occur where the second derivative of the funtion is equal to zero.

Find this second derivative by taking the derivative of the function twice:

 \displaystyle f(x)=x^3+21x^2+10

\displaystyle f'(x)=3x^2+42x

\displaystyle f'(x)=6x+42

Set the second derivative to zero and find the values that satisfy the equation:

 \displaystyle 6x+42=0

\displaystyle x=-7

It can be shown that this is a point of inflection by the change in sign of the second derivative with points before and after this value

\displaystyle 6(-6)+42=6

\displaystyle 6(-8)+42=-6

Now, plug this value back in to the original function to find the value of the function that matches:

\displaystyle f(x)=(-7)^3+21(-7)^2+10=696

The point of inflection is \displaystyle (-7,696)

It can be confirmed that \displaystyle x=-7 is a point of inflection due to the sign change around this point. Picking a greater and lower value \displaystyle x=-8,0, observe the difference in sign of the second derivative:

\displaystyle f''(-8)=6(-8)+42=-6

\displaystyle f''(0)=6(0)+42=42

Example Question #532 : Differential Functions

Which of the following is not a point of inflection for the function \displaystyle f(x)=\frac{1}{3}x^3+2\pi cos(x) ?

Possible Answers:

\displaystyle (\pi, 4.05)

\displaystyle (-2.48,-10.04)

\displaystyle (1.18,2.94)

\displaystyle (-\pi,-16.62)

Correct answer:

\displaystyle (\pi, 4.05)

Explanation:

The points of inflection of a function occur where the second derivative of the funtion is equal to zero.

Find this second derivative by taking the derivative of the function twice:

 \displaystyle f(x)=\frac{1}{3}x^3+2\pi cos(x)

To take these derivatives, make use of the following rules:

\displaystyle d[sin(u)]=cos(u)du

\displaystyle d[cos(u)]=-sin(u)du

\displaystyle f'(x)=x^2-2\pi sin(x)

\displaystyle f''(x)=2x-2\pi cos(x)

Set the second derivative to zero and find the values that satisfy the equation:

 \displaystyle 2x-2\pi cos(x)=0

\displaystyle x=-\pi,-2.48,1.18

These can be shown to be points inflection by observing how the signs on the plot of \displaystyle f''(x)=2x-2\pi cos(x); note how the function crosses the x-axis at these values

Greinflectionplot

Now, plug these values back in to the original function to find the values of the function that match to them:

\displaystyle f(-\pi)=\frac{1}{3}(-\pi)^3+2\pi cos(-\pi)=-16.62

\displaystyle f(-2.48)=\frac{1}{3}(-2.48)^3+2\pi cos(-2.48)=-10.04

\displaystyle f(1.18)=\frac{1}{3}(1.18)^3+2\pi cos(1.18)=2.94

The points of inflection are \displaystyle (-\pi,-16.62)\displaystyle (-2.48,-10.04)\displaystyle (1.18,2.94)

Example Question #342 : Other Differential Functions

Find the derivative at \displaystyle x=3.

\displaystyle 7x^{2}+x-6

Possible Answers:

\displaystyle 42

\displaystyle 40

\displaystyle 41

\displaystyle 43

Correct answer:

\displaystyle 43

Explanation:

First, find the derivative using the power rule:

Remember that the power rule is:

\displaystyle (x^n)'=nx^{n-1}

Apply this to our problem to get

\displaystyle 14x+1

Now, substitute \displaystyle 3 for \displaystyle x.

\displaystyle 14(3)+1=43

Example Question #342 : How To Find Differential Functions

Find the derivative at \displaystyle x=6.

\displaystyle 2x+x^2-9

Possible Answers:

\displaystyle 8

\displaystyle 39

\displaystyle 48

\displaystyle 6

Correct answer:

\displaystyle 8

Explanation:

First, use the power rule to find the derivative.

Remember that the power rule is:

\displaystyle (x^n)'=nx^{n-1}

Apply this to our problem to get

\displaystyle 2+x

Now, substitute \displaystyle 6 for \displaystyle x.

\displaystyle 2+6=8

Example Question #343 : How To Find Differential Functions

Find the derivative at \displaystyle x=0.

\displaystyle x^4+2x^3-3

Possible Answers:

\displaystyle 3

\displaystyle \frac{1}{2}

\displaystyle 0

\displaystyle 2

Correct answer:

\displaystyle 0

Explanation:

Find the derivative using the power rule.

Remember that the power rule is:

\displaystyle (x^n)'=nx^{n-1}

Apply this to our problem to get

\displaystyle 4x^3+6x^2

Now, substitute \displaystyle 0 for \displaystyle x

\displaystyle 4(0)^3+6(0)^2

\displaystyle 0

Example Question #345 : Other Differential Functions

Find the derivative at \displaystyle x=1.

\displaystyle 5x^3+2x^2-x

Possible Answers:

\displaystyle 18

\displaystyle 19

\displaystyle 14

\displaystyle 15

Correct answer:

\displaystyle 18

Explanation:

First, find the derivative using the power rule. 

Remember that the power rule is:

\displaystyle (x^n)'=nx^{n-1}

Apply this to our problem to get

\displaystyle 15x^2+4x-1

Now, substitute \displaystyle 1 for \displaystyle x.

\displaystyle 15(1)^2+4(1)-1=15+4-1=18

Example Question #343 : How To Find Differential Functions

Find the derivative.

\displaystyle 7x^3+x^2+3x

Possible Answers:

\displaystyle 21x+2

\displaystyle 7x^3-x^2-3x

\displaystyle 21x^2+2x+3

\displaystyle 7x^2+x+3

Correct answer:

\displaystyle 21x^2+2x+3

Explanation:

Use the power rule to find this derivative.

Remember that the power rule is:

\displaystyle (x^n)'=nx^{n-1}

Apply this to our problem to get

\displaystyle \frac{d}{dx}7x^3=21x^2

\displaystyle \frac{d}{dx}x^2=2x

\displaystyle \frac{d}{dx}3x=3

Thus, the derivative is \displaystyle 21x^2+2x+3.

Example Question #538 : Differential Functions

Which of the following is a point of inflection for the function \displaystyle f(x)=x^4+16x^3+90x^2-50 ?

Possible Answers:

\displaystyle (-5,825)

\displaystyle (3,1273)

\displaystyle (3,409)

\displaystyle (2,454)

\displaystyle (-2,198)

Correct answer:

\displaystyle (-5,825)

Explanation:

The points of inflection of a function occur where the second derivative of the funtion is equal to zero.

Find this second derivative by taking the derivative of the function twice:

 \displaystyle f(x)=x^4+16x^3+90x^2-50

\displaystyle f'(x)=4x^3+48x^2+180x

\displaystyle f''(x)=12x^2+96x+180

Set the second derivative to zero and find the values that satisfy the equation:

\displaystyle 12x^2+96x+180=0

\displaystyle 12(x^2+8x+15)

\displaystyle 12(x+3)(x+5)

\displaystyle x=-3,-5 

These points can be shown to be points of inflection by how the sign changes at points just adjacent to them:

For \displaystyle x=-3

\displaystyle 12(-2)^2+96(-2)+180=36

\displaystyle 12(-4)^2+96(-4)+180=-12

For \displaystyle x=-5

\displaystyle 12(-4)^2+96(-4)+180=-12

\displaystyle 12(-6)^2+96(-6)+180=36

Now, plug these values back in to the original function to find the values of the function that match to them:

\displaystyle f(-3)=(-3)^4+16(-3)^3+90(-3)^2-50=409

\displaystyle f(-5)=(-5)^4+16(-5)^3+90(-5)^2-50=825

The two points of inflection are

\displaystyle (-3,409)\displaystyle (-5,825)

To verify an inflection point, plug a x value higher and lower into the second derivative to find if there is a sign change. If a sign change occurs around the inflection point than it is in fact a true inflection point. To check \displaystyle x=-5, plug in a value higher and a value lower than it.

\displaystyle f''(-6)=12(-6)^2+96(-6)+180=36

\displaystyle f''(-4)=12(-4)^2+96(-4)+180=-12

 

Example Question #531 : Differential Functions

Find the derivative.

\displaystyle x^2\sin(x)

Possible Answers:

\displaystyle x^2\cos(x)+2x\sin(x)

\displaystyle 2x\cos(x)+2x\sin(x)

\displaystyle 2x\cos(x)+x^2\sin(x)

\displaystyle x^2\cos(x)-2x\sin(x)

Correct answer:

\displaystyle x^2\cos(x)+2x\sin(x)

Explanation:

Use the product rule to find the derivative.

Remember that the product rule is:

\displaystyle (f(x)g(x))'=f'(x)g(x)+f(x)g'(x)

Apply this to our problem to get

\displaystyle \frac{d}{dx}x^2\sin(x)=x^2\cos(x)+2x\sin (x)

Example Question #352 : Other Differential Functions

Which of the following is an inflection point for the function \displaystyle f(x)=4x^3-48x^2+420 ?

Possible Answers:

\displaystyle (0,420)

\displaystyle (4,-92)

\displaystyle (376,1)

\displaystyle (1,376)

\displaystyle (2,260)

Correct answer:

\displaystyle (4,-92)

Explanation:

The points of inflection of a function occur where the second derivative of the funtion is equal to zero.

Find this second derivative by taking the derivative of the function twice:

 \displaystyle f(x)=4x^3-48x^2+420

\displaystyle f'(x)=12x^2-96x

\displaystyle f''(x)=24x-96

Set the second derivative to zero and find the values that satisfy the equation:

 \displaystyle 24x-96=0

\displaystyle x=4

This can be shown to be a point of inflection by how the sign changes for \displaystyle f''(x)=24x-96 on either side of it:

\displaystyle f''(3)=24(3)-96=-24

\displaystyle f''(5)=24(5)-96=24

Now, plug this value back in to the original function to find the value of the function that matches:

 \displaystyle f(4)=4(4)^3-48(4)^2+420=-92

The point of inflection is \displaystyle (4,-92).

To verify this is a true inflection point, plug in x values that are higher and lower than four. If a sign change occurs around four than it is in fact an inflection point.

\displaystyle f''(0)=24(0)-96=-96

\displaystyle f''(5)=24(5)-96=24

Learning Tools by Varsity Tutors