Calculus 1 : Other Differential Functions

Study concepts, example questions & explanations for Calculus 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #481 : How To Find Differential Functions

Find the divergence of the function  at 

Hint: 

Possible Answers:

Correct answer:

Explanation:

Divergence can be viewed as a measure of the magnitude of a vector field's source or sink at a given point.

To visualize this, picture an open drain in a tub full of water; this drain may represent a 'sink,' and all of the velocities at each specific point in the tub represent the vector field. Close to the drain, the velocity will be greater than a spot farther away from the drain.

What divergence can calculate is what this velocity is at a given point. Again, the magnitude of the vector field.

We're given the function

 

What we will do is take the derivative of each vector element with respect to its variable 

Then sum the results together:

 

At the point 

Example Question #1698 : Calculus

Find the divergence of the function  at 

Hint: 

Possible Answers:

Correct answer:

Explanation:

Divergence can be viewed as a measure of the magnitude of a vector field's source or sink at a given point.

To visualize this, picture an open drain in a tub full of water; this drain may represent a 'sink,' and all of the velocities at each specific point in the tub represent the vector field. Close to the drain, the velocity will be greater than a spot farther away from the drain.

What divergence can calculate is what this velocity is at a given point. Again, the magnitude of the vector field.

We're given the function

 

What we will do is take the derivative of each vector element with respect to its variable 

Then sum the results together:

 

At the point 

Example Question #483 : Other Differential Functions

Find the divergence of the function  at 

Hint: 

Possible Answers:

Correct answer:

Explanation:

Divergence can be viewed as a measure of the magnitude of a vector field's source or sink at a given point.

To visualize this, picture an open drain in a tub full of water; this drain may represent a 'sink,' and all of the velocities at each specific point in the tub represent the vector field. Close to the drain, the velocity will be greater than a spot farther away from the drain.

What divergence can calculate is what this velocity is at a given point. Again, the magnitude of the vector field.

We're given the function

 

What we will do is take the derivative of each vector element with respect to its variable 

Then sum the results together:

At the point 

Example Question #481 : Other Differential Functions

Find the divergence of the function  at 

Hint: 

Possible Answers:

Correct answer:

Explanation:

Divergence can be viewed as a measure of the magnitude of a vector field's source or sink at a given point.

To visualize this, picture an open drain in a tub full of water; this drain may represent a 'sink,' and all of the velocities at each specific point in the tub represent the vector field. Close to the drain, the velocity will be greater than a spot farther away from the drain.

What divergence can calculate is what this velocity is at a given point. Again, the magnitude of the vector field.

We're given the function

 

What we will do is take the derivative of each vector element with respect to its variable 

Then sum the results together:

At the point 

Example Question #671 : Differential Functions

Find the divergence of the function  at 

Hint: 

Possible Answers:

Correct answer:

Explanation:

Divergence can be viewed as a measure of the magnitude of a vector field's source or sink at a given point.

To visualize this, picture an open drain in a tub full of water; this drain may represent a 'sink,' and all of the velocities at each specific point in the tub represent the vector field. Close to the drain, the velocity will be greater than a spot farther away from the drain.

What divergence can calculate is what this velocity is at a given point. Again, the magnitude of the vector field.

We're given the function

 

What we will do is take the derivative of each vector element with respect to its variable 

Then sum the results together:

 

At the point 

Example Question #672 : Differential Functions

Find the divergence of the function  at 

Hint: 

Possible Answers:

Correct answer:

Explanation:

Divergence can be viewed as a measure of the magnitude of a vector field's source or sink at a given point.

To visualize this, picture an open drain in a tub full of water; this drain may represent a 'sink,' and all of the velocities at each specific point in the tub represent the vector field. Close to the drain, the velocity will be greater than a spot farther away from the drain.

What divergence can calculate is what this velocity is at a given point. Again, the magnitude of the vector field.

We're given the function

 

What we will do is take the derivative of each vector element with respect to its variable 

Then sum the results together:

At the point 

Example Question #673 : Differential Functions

Find the divergence of the function  at 

Hint: 

Possible Answers:

Correct answer:

Explanation:

Divergence can be viewed as a measure of the magnitude of a vector field's source or sink at a given point.

To visualize this, picture an open drain in a tub full of water; this drain may represent a 'sink,' and all of the velocities at each specific point in the tub represent the vector field. Close to the drain, the velocity will be greater than a spot farther away from the drain.

What divergence can calculate is what this velocity is at a given point. Again, the magnitude of the vector field.

We're given the function

 

What we will do is take the derivative of each vector element with respect to its variable 

Then sum the results together:

At the point  

Example Question #488 : Other Differential Functions

Find the divergence of the function  at 

Hint: 

Possible Answers:

Correct answer:

Explanation:

Divergence can be viewed as a measure of the magnitude of a vector field's source or sink at a given point.

To visualize this, picture an open drain in a tub full of water; this drain may represent a 'sink,' and all of the velocities at each specific point in the tub represent the vector field. Close to the drain, the velocity will be greater than a spot farther away from the drain.

What divergence can calculate is what this velocity is at a given point. Again, the magnitude of the vector field.

We're given the function

What we will do is take the derivative of each vector element with respect to its variable 

Then sum the results together:

Derivative of an exponential: 

Trigonometric derivative: 

Note that u may represent large functions, and not just individual variables!

At the point 

Example Question #1701 : Calculus

Find the divergence of the function  at 

Hint: 

Possible Answers:

Correct answer:

Explanation:

Divergence can be viewed as a measure of the magnitude of a vector field's source or sink at a given point.

To visualize this, picture an open drain in a tub full of water; this drain may represent a 'sink,' and all of the velocities at each specific point in the tub represent the vector field. Close to the drain, the velocity will be greater than a spot farther away from the drain.

What divergence can calculate is what this velocity is at a given point. Again, the magnitude of the vector field.

We're given the function

What we will do is take the derivative of each vector element with respect to its variable 

Then sum the results together:

At the point 

Example Question #1702 : Calculus

Find the divergence of the function  at 

Hint: 

Possible Answers:

Correct answer:

Explanation:

Divergence can be viewed as a measure of the magnitude of a vector field's source or sink at a given point.

To visualize this, picture an open drain in a tub full of water; this drain may represent a 'sink,' and all of the velocities at each specific point in the tub represent the vector field. Close to the drain, the velocity will be greater than a spot farther away from the drain.

What divergence can calculate is what this velocity is at a given point. Again, the magnitude of the vector field.

We're given the function

What we will do is take the derivative of each vector element with respect to its variable 

Then sum the results together:

Derivative of an exponential: 

Note that u may represent large functions, and not just individual variables!

At the point 

Learning Tools by Varsity Tutors