All Calculus 1 Resources
Example Questions
Example Question #1662 : Calculus
Given the following piecewise function:
Is this a differential function?
No because it isn't continuous nor differentiable at
No because it isn't differentiable at
No because it isn't continuous at
No because it is differentiable at , but not continuous.
No because it isn't differentiable at
In order to determine if this function is differential, we must see if the functions have the same values at and if they have the same derivative at . In other words we have to determine if the function is continuous and differentiable.
To determine if the functions are continuous, we must see if both piecewise functions are equal at .
If we say and ,
,
Therefore, the piecewise function is continuous at .
To determine if it is differentiable, let's solve for the derivatives of both pieces at .
via the power rule. via trigonometric identities.
Solving the derivatives at x=1,
, and .
Since the functions do not have the same derivatives at , they are not differentiable.
Therefore, the piecewise function is not a differential function because it isn't differentiable at
Example Question #451 : Other Differential Functions
Given:
Find f''(x)
We are given:
This particular function will use the chain rule and trigonometric rule for cosine and sine.
The problem requires us to take the derivative twice, and so we will proceed like so:
Taking the derivative of this new function will require the use of the product rule:
This is one of the answer choices.
Example Question #1663 : Calculus
Determine the slope of the function at .
To consider finding the slope, let's discuss the topic of the gradient.
For a function , the gradient is the sum of the derivatives with respect to each variable, multiplied by a directional vector:
It is essentially the slope of a multi-dimensional function at any given point
Knowledge of the following derivative rules will be necessary:
Trigonometric derivative:
Quotient rule:
Note that u and v may represent large functions, and not just individual variables!
The approach to take with this problem is to simply take the derivatives one at a time. When deriving for one particular variable, treat the other variables as constant.
at
x:
y:
The slope is
Example Question #1664 : Calculus
Find the slope of the function at .
To consider finding the slope, let's discuss the topic of the gradient.
For a function , the gradient is the sum of the derivatives with respect to each variable, multiplied by a directional vector:
It is essentially the slope of a multi-dimensional function at any given point
Knowledge of the following derivative rules will be necessary:
Trigonometric derivative:
Note that u may represent large functions, and not just individual variables!
The approach to take with this problem is to simply take the derivatives one at a time. When deriving for one particular variable, treat the other variables as constant.
at
x:
y:
The slope is
Example Question #451 : Other Differential Functions
Find the slope of the function at .
To consider finding the slope, let's discuss the topic of the gradient.
For a function , the gradient is the sum of the derivatives with respect to each variable, multiplied by a directional vector:
It is essentially the slope of a multi-dimensional function at any given point
Knowledge of the following derivative rules will be necessary:
Trigonometric derivative:
Note that u may represent large functions, and not just individual variables!
The approach to take with this problem is to simply take the derivatives one at a time. When deriving for one particular variable, treat the other variables as constant.
at
x:
y:
The slope is
Example Question #1672 : Calculus
Find the slope of the function at .
To consider finding the slope, let's discuss the topic of the gradient.
For a function , the gradient is the sum of the derivatives with respect to each variable, multiplied by a directional vector:
It is essentially the slope of a multi-dimensional function at any given point
Knowledge of the following derivative rules will be necessary:
Derivative of an exponential:
Trigonometric derivative:
Note that u may represent large functions, and not just individual variables!
The approach to take with this problem is to simply take the derivatives one at a time. When deriving for one particular variable, treat the other variables as constant.
at
x:
y:
The slope is
Example Question #1673 : Calculus
Find the slope of the function at .
To consider finding the slope, let's discuss the topic of the gradient.
For a function , the gradient is the sum of the derivatives with respect to each variable, multiplied by a directional vector:
It is essentially the slope of a multi-dimensional function at any given point
Knowledge of the following derivative rules will be necessary:
Derivative of an exponential:
Trigonometric derivative:
Note that u and v may represent large functions, and not just individual variables!
The approach to take with this problem is to simply take the derivatives one at a time. When deriving for one particular variable, treat the other variables as constant.
at
x:
y:
The slope is
Example Question #1674 : Calculus
Find the slope of the function at .
To consider finding the slope, let's discuss the topic of the gradient.
For a function , the gradient is the sum of the derivatives with respect to each variable, multiplied by a directional vector:
It is essentially the slope of a multi-dimensional function at any given point
Knowledge of the following derivative rules will be necessary:
Trigonometric derivative:
Quotient rule:
Note that u and v may represent large functions, and not just individual variables!
The approach to take with this problem is to simply take the derivatives one at a time. When deriving for one particular variable, treat the other variables as constant.
at
x:
y:
The slope is
Example Question #451 : How To Find Differential Functions
Determine the slope of the function at .
To consider finding the slope, let's discuss the topic of the gradient.
For a function , the gradient is the sum of the derivatives with respect to each variable, multiplied by a directional vector:
It is essentially the slope of a multi-dimensional function at any given point
Knowledge of the following derivative rules will be necessary:
Derivative of an exponential:
Trigonometric derivative:
Note that u may represent large functions, and not just individual variables!
The approach to take with this problem is to simply take the derivatives one at a time. When deriving for one particular variable, treat the other variables as constant.
at
x:
y:
The slope is
Example Question #1676 : Calculus
Find the slope of the function at .
To consider finding the slope, let's discuss the topic of the gradient.
For a function , the gradient is the sum of the derivatives with respect to each variable, multiplied by a directional vector:
It is essentially the slope of a multi-dimensional function at any given point
Knowledge of the following derivative rules will be necessary:
Derivative of an exponential:
Trigonometric derivative:
Note that u may represent large functions, and not just individual variables!
The approach to take with this problem is to simply take the derivatives one at a time. When deriving for one particular variable, treat the other variables as constant.
at
x:
y:
The slope is
Certified Tutor