Calculus 1 : Midpoint Riemann Sums

Study concepts, example questions & explanations for Calculus 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #121 : How To Find Midpoint Riemann Sums

Using the method of midpoint Riemann sums, approximate

 \displaystyle \int_0^{0.15} \tan(\cos(\sin(x^3))) using three midpoints.

Possible Answers:

\displaystyle 0.102

\displaystyle 2.119

\displaystyle 0.234

\displaystyle 0.008

\displaystyle 3.457

Correct answer:

\displaystyle 0.234

Explanation:

A Riemann sum integral approximation over an interval \displaystyle [a,b] with \displaystyle n subintervals follows the form:

\displaystyle \int_a^b f(x)dx \approx \frac{b-a}{n}(f(x_1)+f(x_2)+...+f(x_n))

It is essentially a sum of \displaystyle n rectangles each with a base of length \displaystyle \frac{b-a}{n} and variable heights \displaystyle f(x_i), which depend on the function value at a given point  \displaystyle x_i.

We're evaluating \displaystyle \int_0^{0.15} \tan(\cos(\sin(x^3)))

So the interval is \displaystyle [0,0.15], the subintervals have length \displaystyle \frac{0.15-0}{3}=0.05, and since we are using the midpoints of each interval, the x-values are \displaystyle [0.025,0.075,0.125]

\displaystyle {\int_0^{0.15} \tan(\cos(\sin(x^3))) \approx (0.05)[\tan(\cos(\sin(0.025^3)))+\tan(\cos(\sin(0.075^3)))+\tan(\cos(\sin(0.125^3)))}]

Example Question #121 : Midpoint Riemann Sums

Using the method of midpoint Riemann sums, approximate \displaystyle \int_{10}^{40}e^{\tan(x)}dx using three midpoints.

Possible Answers:

\displaystyle 17.55

\displaystyle 49.16

\displaystyle 73.54

\displaystyle 28.09

\displaystyle 1.08

Correct answer:

\displaystyle 49.16

Explanation:

A Riemann sum integral approximation over an interval \displaystyle [a,b] with \displaystyle n subintervals follows the form:

\displaystyle \int_a^b f(x)dx \approx \frac{b-a}{n}(f(x_1)+f(x_2)+...+f(x_n))

It is essentially a sum of \displaystyle n rectangles each with a base of length \displaystyle \frac{b-a}{n} and variable heights \displaystyle f(x_i), which depend on the function value at a given point  \displaystyle x_i.

We're asked to approximate \displaystyle \int_{10}^{40}e^{\tan(x)}dx

So the interval is \displaystyle [10,40], the subintervals have length \displaystyle \frac{40-10}{3}=10, and since we are using the midpoints of each interval, the x-values are \displaystyle [15,25,35]

\displaystyle \int_{10}^{40}e^{\tan(x)}dx\approx (10)[e^{\tan(15)}+e^{\tan(25)}+e^{\tan(35)}]

\displaystyle \int_{10}^{40}e^{\tan(x)}dx\approx 49.16

Example Question #123 : How To Find Midpoint Riemann Sums

Using the method of midpoint Riemann sums, approximate \displaystyle \int_{-4}^{4} \tan(x^3+x+1)dx using two midpoints.

Possible Answers:

\displaystyle -99.99

\displaystyle 1.05

\displaystyle -40.67

\displaystyle -901.99

\displaystyle 11.63

Correct answer:

\displaystyle -901.99

Explanation:

A Riemann sum integral approximation over an interval \displaystyle [a,b] with \displaystyle n subintervals follows the form:

\displaystyle \int_a^b f(x)dx \approx \frac{b-a}{n}(f(x_1)+f(x_2)+...+f(x_n))

It is essentially a sum of \displaystyle n rectangles each with a base of length \displaystyle \frac{b-a}{n} and variable heights \displaystyle f(x_i), which depend on the function value at a given point  \displaystyle x_i.

We're asked to approximate \displaystyle \int_{-4}^{4} \tan(x^3+x+1)dx

So the interval is \displaystyle [-4,4], the subintervals have length \displaystyle \frac{4-(-4)}{2}=4, and since we are using the midpoints of each interval, the x-values are \displaystyle [-2,2]

\displaystyle \int_{-4}^{4} \tan(x^3+x+1)dx \approx (4)[\tan((-2)^3+(-2)+1)+\tan(2^3+2+1)]

\displaystyle \int_{-4}^{4} \tan(x^3+x+1)dx \approx -901.99

Example Question #124 : How To Find Midpoint Riemann Sums

Using the method of midpoint Riemann sums, approximate using three midpoints the integral \displaystyle \int_{-1}^{5} \frac{1}{\cos^2(x^2)}dx

Possible Answers:

\displaystyle 6.14

\displaystyle 4.43

\displaystyle 12.28

\displaystyle 8.86

\displaystyle 9.36

Correct answer:

\displaystyle 8.86

Explanation:

A Riemann sum integral approximation over an interval \displaystyle [a,b] with \displaystyle n subintervals follows the form:

\displaystyle \int_a^b f(x)dx \approx \frac{b-a}{n}(f(x_1)+f(x_2)+...+f(x_n))

It is essentially a sum of \displaystyle n rectangles each with a base of length \displaystyle \frac{b-a}{n} and variable heights \displaystyle f(x_i), which depend on the function value at a given point  \displaystyle x_i.

We're asked to approximate \displaystyle \int_{-1}^{5} \frac{1}{\cos^2(x^2)}dx

So the interval is \displaystyle [-1,5], the subintervals have length \displaystyle \frac{5-(-1)}{3}=2, and since we are using the midpoints of each interval, the x-values are \displaystyle [0,2,4]

\displaystyle \int_{-1}^{5} \frac{1}{\cos^2(x^2)}dx \approx (2)[\frac{1}{\cos^2(0^2)}+\frac{1}{\cos^2(2^2)}+\frac{1}{\cos^2(4^2)}]

\displaystyle \int_{-1}^{5} \frac{1}{\cos^2(x^2)}dx \approx 8.86

Example Question #125 : How To Find Midpoint Riemann Sums

Using the method of midpoint Riemann sums, approximate the integral \displaystyle \int_{0.19\pi}^{0.37\pi} \tan(\tan(x))dx using three midpoints.

Possible Answers:

\displaystyle 0.013

\displaystyle -0.013

\displaystyle -0.078

\displaystyle -0.041

\displaystyle 0.108

Correct answer:

\displaystyle -0.041

Explanation:

A Riemann sum integral approximation over an interval \displaystyle [a,b] with \displaystyle n subintervals follows the form:

\displaystyle \int_a^b f(x)dx \approx \frac{b-a}{n}(f(x_1)+f(x_2)+...+f(x_n))

It is essentially a sum of \displaystyle n rectangles each with a base of length \displaystyle \frac{b-a}{n} and variable heights \displaystyle f(x_i), which depend on the function value at a given point  \displaystyle x_i.

We're asked to approximate \displaystyle \int_{0.19\pi}^{0.37\pi} \tan(\tan(x))dx

So the interval is \displaystyle [0.19\pi,0.37\pi], the subintervals have length \displaystyle \frac{0.37\pi-0.19\pi}{3}=0.06\pi, and since we are using the midpoints of each interval, the x-values are \displaystyle [0.22\pi,0.28\pi,0.34\pi]

\displaystyle \int_{0.19\pi}^{0.37\pi} \tan(\tan(x))dx \approx (0.06\pi)[\tan(\tan(0.22\pi))+\tan(\tan(0.28\pi))+\tan(\tan(0.34\pi))]

\displaystyle \int_{0.19\pi}^{0.37\pi} \tan(\tan(x))dx \approx -0.041

Example Question #122 : Midpoint Riemann Sums

Use midpoint Riemann sums to give an estimate of the integral \displaystyle \int_{e}^{e^2}\ln(x^2)dx using three midpoints.

Possible Answers:

\displaystyle 14.82

\displaystyle 19.33

\displaystyle 11.05

\displaystyle 15.64

\displaystyle 17.71

Correct answer:

\displaystyle 14.82

Explanation:

A Riemann sum integral approximation over an interval \displaystyle [a,b] with \displaystyle n subintervals follows the form:

\displaystyle \int_a^b f(x)dx \approx \frac{b-a}{n}(f(x_1)+f(x_2)+...+f(x_n))

It is essentially a sum of \displaystyle n rectangles each with a base of length \displaystyle \frac{b-a}{n} and variable heights \displaystyle f(x_i), which depend on the function value at a given point  \displaystyle x_i.

We're asked to approximate \displaystyle \int_{e}^{e^2}\ln(x^2)dx

So the interval is \displaystyle [e,e^2], the subintervals have length \displaystyle \frac{e^2-e}{3}, and since we are using the midpoints of each interval, the x-values are \displaystyle [e+\frac{e^2-e}{6},e+\frac{e^2-e}{6}+\frac{e^2-e}{3},e+\frac{e^2-e}{6}+\frac{2(e^2-e)}{3}]

or, more simply,

\displaystyle [\frac{e^2+5e}{6},\frac{e^2+e}{2},\frac{5e^2+e}{6}]

It is possible, of course, to simply use numerical approximations of each of these terms.

\displaystyle \int_{e}^{e^2}\ln(x^2)dx \approx (\frac{e^2-e}{3})[\ln((\frac{e^2+5e}{6})^2)+\ln((\frac{e^2+e}{2})^2)+\ln((\frac{5e^2+e}{6})^2)]

\displaystyle \int_{e}^{e^2}\ln(x^2)dx \approx 14.82

Example Question #127 : How To Find Midpoint Riemann Sums

Using 4 intervals, calculate the midpoint Riemann sum approximation of the area under the curve defined by \displaystyle \small f(x) = 3x^2 + 5x + 6 on the interval \displaystyle \small [0, 8].

Possible Answers:

\displaystyle \small 256

\displaystyle \small 712

\displaystyle \small 380

\displaystyle \small 968

\displaystyle \small 504

Correct answer:

\displaystyle \small 712

Explanation:

To make 4 intervals, we need 5 boundary lines. In this case, they are the vertical lines at \displaystyle \small x = 0, 2, 4, 6, 8. So the midpoints of each interval are at \displaystyle \small x = 1, 3, 5, 7, respectively.

The area of each region is found by \displaystyle \small f(x)\cdot \Delta x, where \displaystyle \small \Delta x is the width of the interval (here, 2). So we simply need to find the functional value at each \displaystyle \small x-coordinate of the midpoints above, multiply by 2, and sum. Equivalently, we could sum the functional values, then double the sum.

\displaystyle \small f(1) = 14

\displaystyle \small f(3) = 48

\displaystyle \small f(5) = 106

\displaystyle \small f(7) = 188

Their sum is \displaystyle \small 356, and twice that is \displaystyle \small 712.

The wrong answer \displaystyle \small 504 comes from using \displaystyle \small x = 0, 2, 4, 6 as the midpoints.

The wrong answer \displaystyle \small 968 comes from using \displaystyle \small x = 2, 4, 6, 8 as the midpoints.

Example Question #122 : Midpoint Riemann Sums

Utilize the method of midpoint Riemann sums to approximate \displaystyle \int_{0.2}^{0.5}e^{(\frac{1}{2})^{-\frac{1}{x}}}dx using three midpoints.

Possible Answers:

\displaystyle 8.89 \cdot 10^5

\displaystyle 8.89 \cdot 10^2

\displaystyle 8.89 \cdot 10^4

\displaystyle 8.89 \cdot 10

\displaystyle 8.89 \cdot 10^3

Correct answer:

\displaystyle 8.89 \cdot 10^5

Explanation:

A Riemann sum integral approximation over an interval \displaystyle [a,b] with \displaystyle n subintervals follows the form:

\displaystyle \int_a^b f(x)dx \approx \frac{b-a}{n}(f(x_1)+f(x_2)+...+f(x_n))

It is essentially a sum of \displaystyle n rectangles each with a base of length \displaystyle \frac{b-a}{n} and variable heights \displaystyle f(x_i), which depend on the function value at a given point  \displaystyle x_i.

We're asked to approximate \displaystyle \int_{0.2}^{0.5}e^{(\frac{1}{2})^{-\frac{1}{x}}}dx

So the interval is \displaystyle [0.2,0.5], the subintervals have length \displaystyle \frac{0.5-0.2}{3}=0.1, and since we are using the midpoints of each interval, the x-values are \displaystyle [0.25,0.35,0.45]

\displaystyle \int_{0.2}^{0.5}e^{(\frac{1}{2})^{-\frac{1}{x}}}dx \approx (0.1)[e^{(\frac{1}{2})^{-\frac{1}{0.25}}}+e^{(\frac{1}{2})^{-\frac{1}{0.35}}}+e^{(\frac{1}{2})^{-\frac{1}{0.45}}}]

\displaystyle \int_{0.2}^{0.5}e^{(\frac{1}{2})^{-\frac{1}{x}}}dx \approx 8.89 \cdot 10^5

Example Question #129 : How To Find Midpoint Riemann Sums

Utilize the method of midpoint Riemann sums to approximate \displaystyle \int_{0.8}^{3.2} \frac{0.5}{tan(x^3)}dx using three midpoints.

Possible Answers:

\displaystyle -12.92

\displaystyle -13.39

\displaystyle -8.42

\displaystyle -9.17

\displaystyle -10.33

Correct answer:

\displaystyle -10.33

Explanation:

A Riemann sum integral approximation over an interval \displaystyle [a,b] with \displaystyle n subintervals follows the form:

\displaystyle \int_a^b f(x)dx \approx \frac{b-a}{n}(f(x_1)+f(x_2)+...+f(x_n))

It is essentially a sum of \displaystyle n rectangles each with a base of length \displaystyle \frac{b-a}{n} and variable heights \displaystyle f(x_i), which depend on the function value at a given point  \displaystyle x_i.

We're asked to approximate \displaystyle \int_{0.8}^{3.2} \frac{0.5}{tan(x^3)}dx

So the interval is \displaystyle [0.8,3.2], the subintervals have length \displaystyle \frac{3.2-0.8}{3}=0.8, and since we are using the midpoints of each interval, the x-values are \displaystyle [1.2,2.0,2.8]

\displaystyle \int_{0.8}^{3.2} \frac{0.5}{tan(x^3)}dx\approx (0.8)[\frac{0.5}{tan(1.2^3)}+\frac{0.5}{tan(2^3)}+\frac{0.5}{tan(2.8^3)}]

\displaystyle \int_{0.8}^{3.2} \frac{0.5}{tan(x^3)}dx\approx -10.33

Example Question #130 : How To Find Midpoint Riemann Sums

Utilize the method of midpoint Riemann sums to approximate \displaystyle \int_{0.7}^{1.3}\frac{sin(x)}{sin(x^3)}dx using three midpoints.

Possible Answers:

\displaystyle 0.681

\displaystyle 1.903

\displaystyle 3.408

\displaystyle 0.381

\displaystyle 0.442

Correct answer:

\displaystyle 0.681

Explanation:

A Riemann sum integral approximation over an interval \displaystyle [a,b] with \displaystyle n subintervals follows the form:

\displaystyle \int_a^b f(x)dx \approx \frac{b-a}{n}(f(x_1)+f(x_2)+...+f(x_n))

It is essentially a sum of \displaystyle n rectangles each with a base of length \displaystyle \frac{b-a}{n} and variable heights \displaystyle f(x_i), which depend on the function value at a given point  \displaystyle x_i.

We're asked to approximate \displaystyle \int_{0.7}^{1.3}\frac{sin(x)}{sin(x^3)}dx

So the interval is \displaystyle [0.7,1.3], the subintervals have length \displaystyle \frac{1.3-0.7}{3}=0.2, and since we are using the midpoints of each interval, the x-values are \displaystyle [0.8,1.0,1.2]

\displaystyle \int_{0.7}^{1.3}\frac{sin(x)}{sin(x^3)}dx\approx (0.2)[\frac{sin(0.8)}{sin(0.8^3)}+\frac{sin(1.0)}{sin(1.0^3)}+\frac{sin(1.2)}{sin(1.2^3)}]

\displaystyle \int_{0.7}^{1.3}\frac{sin(x)}{sin(x^3)}dx\approx 0.681

Learning Tools by Varsity Tutors