Calculus 1 : Midpoint Riemann Sums

Study concepts, example questions & explanations for Calculus 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #91 : How To Find Midpoint Riemann Sums

Using the method of midpoint Riemann sums, approximate the integral  using three midpoints.

Possible Answers:

Correct answer:

Explanation:

A Riemann sum integral approximation over an interval  with  subintervals follows the form:

It is essentially a sum of  rectangles each with a base of length  and variable heights , which depend on the function value at a given point  .

We are approximating 

So the interval is , the subintervals have length , and since we are using the midpoints of each interval, the x-values are 

Example Question #92 : How To Find Midpoint Riemann Sums

Approximate the integral  using the method of midpoint Riemann sums and four midpoints.

Possible Answers:

Correct answer:

Explanation:

A Riemann sum integral approximation over an interval  with  subintervals follows the form:

It is essentially a sum of  rectangles each with a base of length  and variable heights , which depend on the function value at a given point  .

We are approximating 

So the interval is , the subintervals have length , and since we are using the midpoints of each interval, the x-values are 

Example Question #93 : How To Find Midpoint Riemann Sums

Using the method of midpoint Riemann sums, approximate the integral  using four midpoints.

Possible Answers:

Correct answer:

Explanation:

A Riemann sum integral approximation over an interval  with  subintervals follows the form:

It is essentially a sum of  rectangles each with a base of length  and variable heights , which depend on the function value at a given point  .

We're approximating 

So the interval is , the subintervals have length , and since we are using the midpoints of each interval, the x-values are 

Example Question #94 : Midpoint Riemann Sums

Using the method of midpoint of Reimann sums, approximate the integral  using three midpoints.

Possible Answers:

Correct answer:

Explanation:

A Reimann sum integral approximation over an interval  with  subintervals follows the form:

It is essentially a sum of  rectangles each with a base of length  and variable heights , which depend on the function value at a given point  .

We're approximating 

So the interval is , the subintervals have length , and since we are using the midpoints of each interval, the x-values are 

Example Question #94 : How To Find Midpoint Riemann Sums

Using the method of midpoint Reimann sums, approximate the integral  using four midpoints.

Possible Answers:

Correct answer:

Explanation:

A Reimann sum integral approximation over an interval  with  subintervals follows the form:

It is essentially a sum of  rectangles each with a base of length  and variable heights , which depend on the function value at a given point  .

We're approximating 

So the interval is , the subintervals have length , and since we are using the midpoints of each interval, the x-values are 

Example Question #91 : How To Find Midpoint Riemann Sums

Using the method of midpoint Reimann sums, approximate the integral  using two midpoints.

Possible Answers:

Correct answer:

Explanation:

A Reimann sum integral approximation over an interval  with  subintervals follows the form:

It is essentially a sum of  rectangles each with a base of length  and variable heights , which depend on the function value at a given point  .

We're approximating 

So the interval is , the subintervals have length , and since we are using the midpoints of each interval, the x-values are 

Example Question #96 : How To Find Midpoint Riemann Sums

Using the method of midpoint Reimann sums, approximate the integral  using three midpoints.

Possible Answers:

Correct answer:

Explanation:

A Reimann sum integral approximation over an interval  with  subintervals follows the form:

It is essentially a sum of  rectangles each with a base of length  and variable heights , which depend on the function value at a given point  .

We're approximating 

So the interval is , the subintervals have length , and since we are using the midpoints of each interval, the x-values are 

Example Question #97 : How To Find Midpoint Riemann Sums

Using the method of midpoint Reimann sums, approximate the integral  using three midpoints.

Possible Answers:

Correct answer:

Explanation:

A Reimann sum integral approximation over an interval  with  subintervals follows the form:

It is essentially a sum of  rectangles each with a base of length  and variable heights , which depend on the function value at a given point  .

We're approximating 

So the interval is , the subintervals have length , and since we are using the midpoints of each interval, the x-values are 

Example Question #98 : How To Find Midpoint Riemann Sums

Using the method of midpoint Reimann sums, approximate the integral  using four midpoints.

Possible Answers:

Correct answer:

Explanation:

A Reimann sum integral approximation over an interval  with  subintervals follows the form:

It is essentially a sum of  rectangles each with a base of length  and variable heights , which depend on the function value at a given point  .

We're approximating 

So the interval is , the subintervals have length , and since we are using the midpoints of each interval, the x-values are 

Example Question #99 : How To Find Midpoint Riemann Sums

Using the method of midpoint Reimann sums, approximate the integral  using three midpoints.

Possible Answers:

Correct answer:

Explanation:

A Reimann sum integral approximation over an interval  with  subintervals follows the form:

It is essentially a sum of  rectangles each with a base of length  and variable heights , which depend on the function value at a given point  .

We're approximating 

So the interval is , the subintervals have length , and since we are using the midpoints of each interval, the x-values are 

Learning Tools by Varsity Tutors