Calculus 1 : Calculus

Study concepts, example questions & explanations for Calculus 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Find Rate Of Flow

The volume  of water (in liters) in a tank at time  (in minutes) is defined by the equation . What is the tank’s rate of flow at  in liters per minute?

Possible Answers:

Correct answer:

Explanation:

We can determine the rate of flow by taking the first derivative of the volume equation for the time provided.

Given, 

, then using the power rule which states,

 thus .

Therefore, at ,

 liters per minute.

Example Question #2 : How To Find Rate Of Flow

The area bouned by the curve  and  is being filled up with water at a rate of  unit-squared per second. When the water-level is at  how quickly is the water-level rising?

Canvas

Possible Answers:

 units per second

 units per second

 units per second

 units per second

 units per second

Correct answer:

 units per second

Explanation:

If , then . Therefore the width of the water at this level is . Some small change  in height is associated with a change of  in area. In other words:

Taking the reciprocal yields:

 

We also know that  is increasing at 2 unit-squared per second, so:

 

Therefore:

Therefore, the height will be rising at  units per second.

Example Question #3 : How To Find Rate Of Flow

The volume  of water (in liters) in a stream at time  (in minutes) is defined by the equation . What is the stream’s rate of flow at  in liters per minute?

Possible Answers:

Correct answer:

Explanation:

We can determine the rate of flow by taking the first derivative of the volume equation for the time provided.

Given,

  and the power rule 

 

where ,  then

Therefore, at ,

  liters per minute. 

Example Question #1 : How To Find Rate Of Flow

The volume  of water (in liters) in a pool at time  (in minutes) is defined by the equation . What is the pool’s rate of flow at   in liters per minute?

Possible Answers:

Correct answer:

Explanation:

We can determine the rate of flow by taking the first derivative of the volume equation for the time provided.

Given 

 and the power rule

  where , then 

.

Therefore, at 

  liters per minute. 

Example Question #11 : Rate Of Flow

The volume  of water (in liters) in a tank at time  (in minutes) is defined by the equation . What is the tank’s rate of flow at   in liters per minute?

Possible Answers:

Correct answer:

Explanation:

We can determine the rate of flow by taking the first derivative of the volume equation for the time provided.

Given 

 and the power rule 

 where , then 

Therefore, at 

  liters per minute. 

Example Question #11 : Rate Of Flow

The volume of water a pipe recieves is given as .  What is the flow rate of the pipe at ? The volume is in liters.

Possible Answers:

Correct answer:

Explanation:

Flow rate can be defined as the volume of a liquid passing through a surface per time .  This means that in order to solve this equation we must differentiate the volume equaiton we are given with respect to time.  By doing so we will obtain the change in volume per unit time, or the flow rate.  To take the derivative of this equation, we must use the power rule,  .  

We also must remember that the derivative of an constant is 0.  Differentiating the volume equaiton given, we obtain 

.

Plugging in  for this equation, the flow rate of this pipe at  is

 .

Example Question #1801 : Functions

The volume  of water (in liters) in a tank at time  (in minutes) is defined by the equation . If Daisy were to drain the tank, what would be the rate of flow at  in liters per minute?

Possible Answers:

Correct answer:

Explanation:

We can determine the rate of flow by taking the first derivative of the volume equation for the time provided.

Given

 and the power rule 

 where , then  .

Therefore, at ,

 liters per minute. 

Example Question #1805 : Functions

The volume  of water (in liters) in a river at time  (in minutes) is defined by the equation . What is the rate of flow at  in liters per minute?

Possible Answers:

Correct answer:

Explanation:

We can determine the rate of flow by taking the first derivative of the volume equation for the time provided.

Given 

 and the power rule 

 where , then  .

Therefore, at 

 liters per minute. 

Example Question #1806 : Functions

The volume  of water (in liters) in a water slide at time  (in minutes) is defined by the equation . What is the rate of flow at  in liters per minute?

Possible Answers:

Correct answer:

Explanation:

We can determine the rate of flow by taking the first derivative of the volume equation for the time provided.

Given 

 and the power rule 

 where , then  .

Therefore, at 

 liters per minute. 

Example Question #12 : Rate Of Flow

A spring-fed lake has a volume modeled by  (in liters). Find the rate of flow after  seconds and tell whether water is flowing into or out of the lake.

Possible Answers:

 out of the lake

 into the lake

 out of the lake

 into the lake

Correct answer:

 into the lake

Explanation:

A spring-fed lake has a volume modeled by V(t). Find the rate of flow after 50 seconds and tell whether water is flowing into or out of the lake.

To find the rate of flow from a volume function, differentiate the volume function and evaluate at the given value of t.

In other words, we need to take V(t) and find V'(5).

So, this

Becomes:

Then,

Since we have a positive flow rate, we can say that water is flowing into the lake, thereby increasing the volume of the lake.

Learning Tools by Varsity Tutors