Calculus 1 : Calculus

Study concepts, example questions & explanations for Calculus 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #81 : Intervals

Use the trapezoidal approximation to find the area under the curve using the graph with four partitions.

Graph1

 

Possible Answers:

\displaystyle A\approx 19.2

\displaystyle A \approx 24.4

\displaystyle A\approx 29.6

\displaystyle A \approx 38.4

Correct answer:

\displaystyle A\approx 29.6

Explanation:

The trapezoid rule states that 

\displaystyle \\ A\approx \frac{\Delta x}{2}[f(x_0)+2\sum_{i=1}^{n-1}f(x_i)+f(x_n)]\\ \Delta x=\frac{b-a}{n}, x_i=a+i\Delta x.

Therefore, using our graph, we have:

\displaystyle \\ \Delta x=\frac{8}{4}=2\\ \\ x_i=0,2,4,6,8

We find the function values at the sample point:

\displaystyle f(x_i)=6,4,4,2.4,2.8

Then we substitute the appropriate values into the trapezoid rule approximation:

\displaystyle A\approx\frac{2}{2}[6+2(4+4+2.4)+2.8]=29.6

Example Question #1 : Trapezoidal Approximation

Is the following function increasing or decreasing at the point \displaystyle x=-6?

\displaystyle h(x)=-x^5+5x^4+2x

Possible Answers:

h(x) is increasing at \displaystyle x=-6, because the second derivative is positive.

h(x) is decreasing at \displaystyle x=-6, because the second derivative is negative.

h(x) is increasing at \displaystyle x=-6, because the first derivative is positive.

h(x) is decreasing at \displaystyle x=-6, because the first derivative is negative.

Correct answer:

h(x) is decreasing at \displaystyle x=-6, because the first derivative is negative.

Explanation:

Is the following function increasing or decreasing at the point \displaystyle x=-6?

\displaystyle h(x)=-x^5+5x^4+2x

Increasing and decreasing intervals can be found via the first derivative. Since derivatives measure rates of change, the sign of the derivative at a given point can tell you whether a function is increasing or decreasing.

Begin by taking the derivative of our function:

\displaystyle h(x)=-x^5+5x^4+2x

Becomes:

\displaystyle h'(x)=-5x^4+20x^3+2

Next, find h'(-6) and look at the sign.

\displaystyle h'(x)=-5(-6)^4+20(-6)^3+2=-43198

So, our first derivative is very negative at the given point. This means that h(x) is decreasing.

Example Question #81 : Intervals

Use the trapezoidal approximation to approximate the following integral:

\displaystyle \int_{0}^{5}(x^2+2x+1)dx

Possible Answers:

\displaystyle 9

\displaystyle -90

\displaystyle 180

\displaystyle 90

Correct answer:

\displaystyle 90

Explanation:

The trapezoidal approximation of a definite integral is given by the following formula:

\displaystyle \int_{a}^{b}f(x)dx\approx (b-a)(\frac{f(b)-f(a)}{2})

Using the above formula, we get

\displaystyle 5(\frac{36}{2})=90

Example Question #82 : Intervals

Use the trapezoidal approximation to evaluate the following integral:

\displaystyle \int_{1}^{3}(x^3+x^2+6x)dx

Possible Answers:

\displaystyle 54

\displaystyle 46

\displaystyle 23

\displaystyle 92

Correct answer:

\displaystyle 46

Explanation:

To evaluate a definite integral using the trapezoidal approximation, we must use the formula

\displaystyle \int_{a}^{b}f(x)dx\approx (b-a)(\frac{f(b)-f(a)}{2})

Using the above formula, we get

\displaystyle 2(\frac{27+9+10-1-1-6}{2})=46

Example Question #3 : How To Find Trapezoidal Approximation By Graphing Functions

Use the trapezoidal approximation to evaluate the following integral:

\displaystyle \int_{0}^{\pi} 3\cos(x)dx

Possible Answers:

\displaystyle 6\pi

\displaystyle 3\pi

\displaystyle -3\pi

\displaystyle 0

\displaystyle \frac{3\pi}{2}

Correct answer:

\displaystyle -3\pi

Explanation:

To evaluate a definite integral using the trapezoidal approximation, we must use the formula

\displaystyle \int_{a}^{b}f(x)dx= (b-a)(\frac{f(b)-f(a)}{2})

Using the above formula, we get

\displaystyle \pi(\frac{-3-3}{2})=-3\pi

Example Question #84 : Intervals

Evaluate the following integral using the trapezoidal approximation:

Possible Answers:

\displaystyle \pi (\frac{e^{4\pi}-1}{5})

\displaystyle 2\pi (\frac{e^{4\pi}-1}{5})

\displaystyle 2\pi (\frac{e^{4\pi}-1}{10})

\displaystyle 2\pi (\frac{e^{4\pi}+1}{5})

\displaystyle 2\pi (e^{4\pi}-1)

Correct answer:

\displaystyle 2\pi (\frac{e^{4\pi}-1}{10})

Explanation:

To evaluate the integral using the trapezoidal rule, we must use the formula

\displaystyle \int_{a}^{b}f(x)dx\approx (b-a)(\frac{f(b)-f(a)}{2})

Using the above formula, we get the following:

\displaystyle 2\pi(\frac{e^{4\pi}-1}{10})

Example Question #7 : Trapezoidal Approximation

Evaluate the integral using the trapezoidal approximation:

\displaystyle \int_{5}^{10}( x^2+e^{x-5})dx

Possible Answers:

\displaystyle \frac{5}{2}(75+e^5)

\displaystyle 5(126+e^5)

\displaystyle \frac{5}{2}(126-e^5)

\displaystyle \frac{5}{2}(126+e^5)

Correct answer:

\displaystyle \frac{5}{2}(126+e^5)

Explanation:

To evaluate a definite integral using the trapezoidal approximation, we must use the following formula:

\displaystyle \int_{a}^{b} f(x)dx\approx \frac{(b-a)(f(a)+f(b))}{2}

So, using the above formula, we get

\displaystyle \frac{(5)(100+e^5+26)}{2}

which simplifies to

\displaystyle \frac{5}{2}(126+e^5)

 

 

Example Question #8 : Trapezoidal Approximation

Evaluate the integral using the trapezoidal approximation:

\displaystyle \int_{2}^{4}\frac{ t^3-t^2}{t}dt

Possible Answers:

\displaystyle 24

\displaystyle 48

\displaystyle 14

\displaystyle 16

\displaystyle 18

Correct answer:

\displaystyle 14

Explanation:

To evaluate the definite integral using the trapezoidal approximation, we must use the following formula:

\displaystyle \int_{a}^{b}f(x)dx\approx (b-a)\frac{(f(a)+f(b))}{2}

Using the above formula, we get

\displaystyle \frac{2(\frac{48}{4}+\frac{4}{2})}{2}=14

 

Example Question #1 : Trapezoidal Approximation

Evaluate the integral using the trapezoidal approximation:

\displaystyle \int_{-2}^{2}\frac{x^2+e^{x-2}}{3x}dx

Possible Answers:

\displaystyle \frac{1-e^{-4}}{3}

\displaystyle \frac{1-e^{-4}}{6}

\displaystyle \frac{1+e^{-4}}{3}

\displaystyle \frac{9+e^{-4}}{3}

Correct answer:

\displaystyle \frac{1-e^{-4}}{3}

Explanation:

To evaluate the integral using the trapezoidal approximation, we must use the following formula:

\displaystyle \int_{a}^{b} f(x)dx\approx (b-a)\frac{(f(b)+f(a))}{2}

Using the formula, we get

\displaystyle \frac{4(\frac{5}{6}+\frac{4+e^{-4}}{-6})}{2}=\frac{1-e^{-4}}{3}

Example Question #2684 : Calculus

Evaluate the integral using the trapezoidal approximation:

\displaystyle \int_{0}^{10} (\frac{x^2e^{10-x}}{5}+5x)dx

Possible Answers:

\displaystyle 150

\displaystyle 0

\displaystyle 700

\displaystyle 350

\displaystyle 250

Correct answer:

\displaystyle 350

Explanation:

To evaluate the definite integral using the trapezoidal approximation, the following formula is used:

\displaystyle \int_{a}^{b}f(x)dx\approx (b-a)\frac{(f(b)+f(a))}{2}

Using the above formula, we get

\displaystyle \frac{10[(\frac{100}{5}+50)+(0)]}{2}=350.

Learning Tools by Varsity Tutors