All Calculus 1 Resources
Example Questions
Example Question #1 : How To Find Relative Maximum On The Interval By Graphing Functions
Determine the relative maxima for the function:
To determine the relative maxima for the function, we must determine where the first derivative of the function changes from positive to negative.
The first derivative of the function is
and was found using the following rule:
Next, we must find the critical points, the values at which the first derivative is equal to zero:
Using the critical values, we can then create the intervals on which we evaluate the sign of the first derivative:
To check the sign of the first derivative, plug in any value on each interval into the first derivative function. On the first interval, the first derivative is positive, on the second, it is negative, and on the third it is positive. The first derivative changes from positive to negative at so a relative maximum exists here.
Example Question #4 : How To Find Relative Maximum On The Interval By Graphing Functions
Find the local max of
using the equation and/or the following graph.
We notice that this function has 2 extrema which are located at and . We could have also of found this by looking at the function itself:
.
We know that extrema exist when the slope of the function is zero, hence we take the derivative, set it equal to zero, and than solve for x.
The derivative is the following:
.
Therefore setting both pieces equal to zero we see the following:
and .
Finding out if one of these x values produce a local min or max however requires either the first derivative test, the second derivative test, or analyzing the graph. We see that for a small neighborhood around , is the largest term, hence it is a local max. Similarly, for a small neighborhood around , is the smallest term, hence is a local min.
Therefore when is the only spot in which a local max occurs. Remember that it is not the x value that must be the largest, rather it is it's corresponding y value.
Example Question #1 : How To Find Relative Minimum On The Interval By Graphing Functions
The following is a list of values at certain points for continuous . By mean-value theorem, how many zeroes must this function have?
Exactly 2
Exactly 1
At most 2
At least 2
At least 1
At least 2
The mean value theorem states that if continuous has , then for all , there must be an that maps to , so since the value above go from negative to positive twice, zero must be mapped to at least twice.
Example Question #1 : How To Find Relative Minimum On The Interval By Graphing Functions
A relative minimum of a function is all the points x, in the domain of the function, such that it is the smallest value for some neighborhood. These are points in which the first derivative is 0 or it does not exist.
Find the relative minimum of the function
using the following graph and the function.
We notice that this function has 2 extrema which are located at x=-1 and x=0. We could have also of found this by looking at the function itself:
.
We know that extrema exist when the slope of the function is zero, hence we take the derivative, set it equal to zero, and than solve for x.
The derivative is the following:
.
Therefore setting both pieces equal to zero we see the following:
and .
Finding out if one of these x values produce a local min or max however requires either the first derivative test, the second derivative test, or analyzing the graph. We see that for a small neighborhood around , is the largest term, hence it is a local max. Similarly, for a small neighborhood around , is the smallest term, hence is a local min and the only local min of this function. Remember that it is not the x value that must be the smallest, rather it is it's corresponding y value.
Example Question #1 : Lines
Consider a function with first-derivative:
.
Which integral can calculate the length along this curve between and ?
This is not possible with the information given.
To determine the length of a curve between two points, we evaluate the integral
There are many reasons this works, but we'll give an informal explanation here:
If we divide this curve into three line-segments, we can see that they become more and more similar to the original curve. By adding up all the little hypotenuses, we can arrive at the length of the curve. Note, that
If we think of the integration symbol as a sum of infinitely small parts, this gets us the formula for length:
.
Returning to the problem, we plug the derivative into the length formula:
substitute:
Simplify:
By trigonometric identities we get:
Example Question #1 : Length Of Line
Find the length of the line segment between points A and B:
The distance between two points can be easily found using the Distance Formula:
Applying the points we are given to this formula results in:
This is one of the answer choices.
Example Question #1 : Equation Of Line
What is the equation of the line tangent to f(x) = 4x3 – 2x2 + 4 at x = 5?
None of the other answers
y = 44x + 245
y = 85x + 24
y = 220x – 550
y = 280x – 946
y = 280x – 946
First, take the derivative of f(x). This is very easy:
f'(x) = 12x2 – 4x
Now, the slope of the tangent line at x = 5 is f'(5). Evaluated, this is: f'(5) = 12 * 5 * 5 – 4 * 5 = 300 – 20 = 280
Now, we must find the intersection point on the original line:
f(5) = 4 * 53 – 2 * 52 + 4 = 500 – 50 + 4 = 454
Therefore, the point of tangent intersection is (5,454).
Using the point-slope form of linear equations, we can find the line:
(y – 454) = 280(x – 5)
y – 454 = 280x – 1400
y = 280x – 946
Example Question #1 : Lines
Find the equation of the line tangent to at the point .
The equation of the tangent line will have the form , where is the slope of the line and .
To find the slope, we need to evaluate the derivative at :
Now that we have the slope, we can determine the equation of the tangent line using the point-slope formula:
Example Question #1 : How To Find Equation Of Line By Graphing Functions
Find the equation of the line tangent to at .
To find the equation of the line at that point, you need two things: the slope at that point and the y adjustment of the function, in the form , where m is the slope and is the y adjustment. To get the slope, find the derivative of and plug in the desired point for , giving us an answer of for the slope.
To find the y adjustment pick a point 0 in the original function. For simplicity, let's plug in , which gives us a y of 1, so an easy point is . Next plug in those values into the equation of a line, . The new equation with all parameters plugged in is
Now you simply solve for , which is .
Final equation of the line tangent to at is
Example Question #2 : Lines
Find the equation of the line tangent to at .
To get the slope, find the derivative of and plug in the desired point for , giving us an answer of for the slope.
Remember that the derivative of .
To find the adjustment pick a point (for example) in the original function. For simplicity, let's plug in , which gives us a of , so an easy point is . Next plug in those values into the equation of a line, . The new equation with all parameters plugged in is
The coefficient in front of the is the slope.
Now you simply solve for , which is .
Final equation of the line tangent to at is .