All Calculus 1 Resources
Example Questions
Example Question #1 : Area
Evalute the following Definite Integral:
For this integral one may be tempted to directly integrate; however, this is no rule of integrals which allows us to do so.
We must apply a complex method of integration, here u-subtitution works best.
We notice that Cos(x) is the derivative of Sin(x) so it may be best to let .
Now that we have found a proper u and du, we may directly substiute into our original integral
However, our limits are in terms of x so we must substitute our u=Sin(x) back in before evaluating
Example Question #72 : Graphing Functions
Suppose a point on the curve given above has the property that .
Based solely on the graph above, which of the following is most likely the value of the point in question?
If then the graph must be concave up at the point. Based on the picture, we know that the curve is concave up on at best. The only value that falls on this interval is , which is . Since , this definitely falls on the interval given and we can be sure it is concave up based on the picture.
Example Question #2 : Points
What is the critical point for ?
To find the critical point, you must find the derivative first. To do that, multiply the exponent by the coefficient in front of the and then subtract the exponent by . Therefore, the derivative is: . Then, to find the critical point, set the derivative equal to .
.
Example Question #1 : Points Of Inflection
Find the inflection point(s) of .
Inflection points can only occur when the second derivative is zero or undefined. Here we have
.
Therefore possible inflection points occur at and . However, to have an inflection point we must check that the sign of the second derivative is different on each side of the point. Here we have
.
Hence, both are inflection points
Example Question #1 : Points Of Inflection
Below is the graph of . How many inflection points does have?
Not enough information
Possible inflection points occur when . This occurs at three values, . However, to be an inflection point the sign of must be different on either side of the critical value. Hence, only are critical points.
Example Question #1 : Points Of Inflection
Find the point(s) of inflection for the function .
and
There are no points of inflection.
and
A point of inflection is found where the graph (or image) of a function changes concavity. To find this algebraically, we want to find where the second derivative of the function changes sign, from negative to positive, or vice-versa. So, we find the second derivative of the given function
The first derivative using the power rule
is,
and the seconds derivative is
We then find where this second derivative equals . when .
We then look to see if the second derivative changes signs at this point. Both graphically and algebraically, we can see that the function does indeed change sign at, and only at, , so this is our inflection point.
Example Question #1 : Points Of Inflection
Find all the points of inflection of
.
There are no inflection points.
In order to find the points of inflection, we need to find using the power rule, .
Now we set , and solve for .
To verify this is a true inflection point we need to plug in a value that is less than it and a value that is greater than it into the second derivative. If there is a sign change around the point than it is a true inflection point.
Let
Now let
Since the sign changes from a positive to a negative around the point , we can conclude it is an inflection point.
Example Question #2 : Points Of Inflection
Find all the points of inflection of
There are no points of inflection.
In order to find the points of inflection, we need to find using the power rule .
Now to find the points of inflection, we need to set .
.
Now we can use the quadratic equation.
Recall that the quadratic equation is
,
where a,b,c refer to the coefficients of the equation .
In this case, a=12, b=0, c=-4.
Thus the possible points of infection are
.
Now to check if or which are inflection points we need to plug in a value higher and lower than each point. If there is a sign change then the point is an inflection point.
To check lets plug in .
Therefore is an inflection point.
Now lets check with .
Therefore is also an inflection point.
Example Question #1 : Points Of Inflection
Find all the points of infection of
.
There are no points of inflection.
In order to find the points of inflection, we need to find using the power rule .
Now lets factor .
Now to find the points of inflection, we need to set .
.
From this equation, we already know one of the point of inflection, .
To figure out the rest of the points of inflection we can use the quadratic equation.
Recall that the quadratic equation is
, where a,b,c refer to the coefficients of the equation
.
In this case, a=20, b=0, c=-18.
Thus the other 2 points of infection are
To verify that they are all inflection points we need to plug in values higher and lower than each value and see if the sign changes.
Lets plug in
Since there is a sign change at each point, all are points of inflection.
Example Question #1 : Points Of Inflection
Find the points of inflection of
.
There are no points of inflection.
There are no points of inflection.
In order to find the points of inflection, we need to find
Now we set .
.
This last statement says that will never be . Thus there are no points of inflection.
Certified Tutor
Certified Tutor