All Calculus 1 Resources
Example Questions
Example Question #172 : Midpoint Riemann Sums
Utilize the method of midpoint Riemann sums to approximate the average of over the interval using four midpoints.
To find the average of a function over a given interval of values , the most precise method is to use an integral as follows:
Now for functions that are difficult or impossible to integrate,a Riemann sum can be used to approximate the value. A Riemann sum integral approximation over an interval with subintervals follows the form:
It is essentially a sum of rectangles each with a base of length equal to the subinterval length , and variable heights , which depend on the function value at a given point .
Now note that when using the method of Riemann sums to find an average value of a function, the expression changes:
We're asked to approximate the average of over the interval
The subintervals have length , and since we are using the midpoints of each interval, the x-values are
Example Question #173 : Midpoint Riemann Sums
Utilize the method of midpoint Riemann sums to approximate using three midpoints.
A Riemann sum integral approximation over an interval with subintervals follows the form:
It is essentially a sum of rectangles each with a base of length and variable heights , which depend on the function value at a given point .
We're asked to approximate
So the interval is , the subintervals have length , and since we are using the midpoints of each interval, the x-values are
Example Question #174 : Midpoint Riemann Sums
Utilize the method of midpoint Riemann sums to approximate using threemidpoints.
A Riemann sum integral approximation over an interval with subintervals follows the form:
It is essentially a sum of rectangles each with a base of length and variable heights , which depend on the function value at a given point .
We're asked to approximate
So the interval is , the subintervals have length , and since we are using the midpoints of each interval, the x-values are
Example Question #175 : Midpoint Riemann Sums
Utilize the method of midpoint Riemann sums to approximate using three midpoints.
A Riemann sum integral approximation over an interval with subintervals follows the form:
It is essentially a sum of rectangles each with a base of length and variable heights , which depend on the function value at a given point .
We're asked to approximate
So the interval is , the subintervals have length , and since we are using the midpoints of each interval, the x-values are
Example Question #176 : Midpoint Riemann Sums
Utilize the method of midpoint Riemann sums to approximate using three midpoints.
A Riemann sum integral approximation over an interval with subintervals follows the form:
It is essentially a sum of rectangles each with a base of length and variable heights , which depend on the function value at a given point .
We're asked to approximate
So the interval is , the subintervals have length , and since we are using the midpoints of each interval, the x-values are
Example Question #177 : Midpoint Riemann Sums
Utilize the method of midpoint Riemann sums to approximate using three midpoints.
A Riemann sum integral approximation over an interval with subintervals follows the form:
It is essentially a sum of rectangles each with a base of length and variable heights , which depend on the function value at a given point .
We're asked to approximate
So the interval is , the subintervals have length , and since we are using the midpoints of each interval, the x-values are
Example Question #178 : Midpoint Riemann Sums
Utilize the method of midpoint Riemann sums to approximate using three midpoints.
A Riemann sum integral approximation over an interval with subintervals follows the form:
It is essentially a sum of rectangles each with a base of length and variable heights , which depend on the function value at a given point .
We're asked to approximate
So the interval is , the subintervals have length , and since we are using the midpoints of each interval, the x-values are
Example Question #179 : Midpoint Riemann Sums
Utilize the method of midpoint Riemann sums to approximate using four midpoints.
A Riemann sum integral approximation over an interval with subintervals follows the form:
It is essentially a sum of rectangles each with a base of length and variable heights , which depend on the function value at a given point .
We're asked to approximate
So the interval is , the subintervals have length , and since we are using the midpoints of each interval, the x-values are
Example Question #180 : Midpoint Riemann Sums
Utilize the method of midpoint Riemann sums to approximate using three midpoints.
A Riemann sum integral approximation over an interval with subintervals follows the form:
It is essentially a sum of rectangles each with a base of length and variable heights , which depend on the function value at a given point .
We're asked to approximate
So the interval is , the subintervals have length , and since we are using the midpoints of each interval, the x-values are
Example Question #181 : Midpoint Riemann Sums
Utilize the method of midpoint Riemann sums to approximate using three midpoints.
A Riemann sum integral approximation over an interval with subintervals follows the form:
It is essentially a sum of rectangles each with a base of length and variable heights , which depend on the function value at a given point .
We're asked to approximate
So the interval is , the subintervals have length , and since we are using the midpoints of each interval, the x-values are
Now, the complex number in the exponent may've been a point of curiosity before a calculator was used to find the result. However, this is a good opportunity to point out a unique mathematical identity: Euler's Identity. Euler's Identity, or rather a facet of it states:
or
In the case of our problem sum, two of our three elements represent a function of this form:
Mathematical beauty.
Certified Tutor
Certified Tutor