Biochemistry : Biochemistry

Study concepts, example questions & explanations for Biochemistry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Reactants And Products Of Lipid Catabolism

In plants, a cycle known as the glyoxylate cycle exists, which allows plants to synthesize carbohydrates from fats. This is how fat-rich seeds are anabolized to produce carbohydrates in plants. 

Even though the glyoxylate cycle does not exist in humans, there is one molecule that is used in gluconeogenesis that comes from -oxidation of fatty acids. Which molecule is this? 

Possible Answers:

NADH

Pyruvate

Glyceraldehyde-3-phosphate

Oxaloacetate

Correct answer:

Oxaloacetate

Explanation:

-oxidation of fatty acids yields large quantities of acetyl-CoA, all of which enters the citric acid cycle. The only intermediate in the citric acid cycle that can form back into glucose is oxaloacetate. It can be turned into phosphoenolpyruvate via phosphoenolpyruvate carboxykinase. 

Example Question #1 : Reactants And Products Of Lipid Catabolism

What is the first step of the beta oxidation of fatty acids?

Possible Answers:

Reduction of a carbon carbon double bond

Formation of a trans double bond between two carbons

Addition of a hydroxyl group

Formation of a cis double bond between two carbons

Formation of a carbon oxygen double bond

Correct answer:

Formation of a trans double bond between two carbons

Explanation:

In the first step of beta oxidation the enzyme acyl-CoA dehydrogenase forms a trans-double bond between the two carbons at the site that will eventually be cleaved.

Example Question #2 : Reactants And Products Of Lipid Catabolism

On average, how many ATP and GTP molecules can be generated from an eighteen-carbon fatty acid?

Possible Answers:

106 ATP, no GTP

159 ATP, 10 GTP

106 ATP, 8 GTP

60 ATP, 4 GTP

120 ATP, 9 GTP

Correct answer:

120 ATP, 9 GTP

Explanation:

First, one must know what the products of one cycle of the beta oxidation pathway are. Each cycle yields , , 1 acetyl-CoA, and a fatty acyl-CoA molecule 2 carbons shorter than the original.

Therefore, an eighteen-carbon fatty acyl-CoA input can go through the beta oxidation cycle 8 times (the last round only a 2 carbon acetyl CoA remains, which cannot enter the beta oxidation pathway again). That means there are  molecules, 9 acetyl-CoA molecules, and  molecules that can be generated from an eighteen-carbon fatty acyl-CoA. 

It may be confusing to understand why there are only  and  molecules and 9 acetyl-CoA, but if one is solving a problem such as this for the first time, go through and draw out the products following each round of the beta oxidation cycle.

2.5 ATP on average can be formed from each  molecule, and 1.5 ATP from each   molecule through the electron transport chain. 10 ATP can be formed in total from one acetyl-CoA entering into the Krebs cycle (by the products of  and  ), along with one GTP molecule.

Therefore:

 

  

If taken into consideration, 2 ATP are needed to activate a fatty acid and allow it to enter into the mitochondria via the enzyme acyl-CoA synthetase.

Therefore, the toTal net yield is

For a quick reference, the following equations can be used:

Where  is number of carbons of an even numbered fatty acid chain.

Example Question #4 : Reactants And Products Of Lipid Catabolism

How many molecules of acetyl-CoA can be expected to be produced from the beta-oxidation of palmitic acid?

Note: Palmitic acid is a saturated fatty acid containing sixteen carbon atoms.

Possible Answers:

Correct answer:

Explanation:

For each round of beta-oxidation, two carbon atoms are removed from the fatty acid chain. These two carbon atoms come off of the chain in the form of acetyl-CoA. Additionally, high energy electron carriers in the form of NADH and  are also produced, thus making beta-oxidation a process that liberates a great deal of energy.

Since the fatty acid that we're starting with has a total of  carbon atoms, we can expect there to be a total of  acetyl-CoA molecules produced, since each of these contains two carbons from the fatty acid.

Example Question #1 : Reactants And Products Of Lipid Catabolism

Which of the following molecules is/are the product(s) at the end of normal beta oxidation of a fatty acid?

Possible Answers:

2 acetyl-CoA molecules

2 acetyl-CoA molecules and 2 propionyl-CoA molecules

1 acetyl-CoA molecule and 1 propionyl-CoA molecule

2 propionyl-CoA molecules

2 keto-acyl-CoA molecules

Correct answer:

2 acetyl-CoA molecules

Explanation:

During beta oxidation of fatty acids, carbons are removed from the fatty acid chain two at a time. So when a fatty acid is composed of an even number of carbons (as most are) 4 carbons will be left at the end. This will be cleaved into two separate 2 carbon molecules - two acetyl-CoA molecules.

Example Question #2 : Reactants And Products Of Lipid Catabolism

Which of the following molecules is/are produced at the end of beta oxidation of a fatty acid with an odd number of carbons in its carbon chain?

Possible Answers:

2 propionyl-CoA molecules

2 propionyl-CoA molecules and 2 acetyl-CoA molecules

1 propionyl-CoA molecule and 1 acetyl-CoA molecule

2 Ketoacyl molecules

2 acetyl-CoA molecules

Correct answer:

1 propionyl-CoA molecule and 1 acetyl-CoA molecule

Explanation:

During beta-oxidation of fatty acids, carbons are removed from the fatty acid chain two at a time. So when a fatty acid is composed of an odd number of carbons, 5 carbons will be left at the end. This will be cleaved into two separate molecules - one with 3 carbons and one with 2 carbons. This is one acetyl-CoA molecule (2 carbons) and one propionyl-CoA molecule (3 carbons).

Example Question #1 : Reactants And Products Of Lipid Catabolism

During beta oxidation, what is the end product of a fatty acid with an odd number of carbons?

Possible Answers:

Succinyl-CoA

Propionyl-CoA

Nothing; these molecules do not exist.

Acetyl-CoA

Correct answer:

Propionyl-CoA

Explanation:

Fatty acids with an odd number of carbons are more common in plants and marine organisms than they are in mammals. When humans consume these organisms in their diets, they must metabolize them through beta oxidation. The end product of this reaction is propionyl-CoA rather than acetyl-CoA, which is formed during cleavage of two-carbon segments (fatty acids with an even number of carbons). Before entering the Krebs cycle, the propionyl-CoA must be transformed into succinyl-CoA.

Example Question #61 : Catabolic Pathways And Metabolism

Where in a cell are fatty acids broken down via -oxidation?

Possible Answers:

Mitochondria

Cytoplasm

Lysosome

Nucleus

Smooth endoplasmic reticulum

Correct answer:

Mitochondria

Explanation:

Fatty acids are taken into the mitochondria to be broken down. This makes sense especially if you consider that the acetyl-CoA generated can be directly used in the citric acid cycle and oxidative phosphorylation immediately afterwards. Note that some beta-oxidation of fatty acids also occurs in the lysosome when the fatty acids chains are too long for the mitochondria. 

Example Question #62 : Catabolic Pathways And Metabolism

Which of the following is the general overview the process of beta-oxidation of saturated fatty acid?

Possible Answers:

Oxidation, hydration, oxidation, thiolysis

Oxidation, hydration, reduction, thiolysis

Reduction, dehydration, reduction, thioesterification

Reduction, hydration, oxidation, thiolysis

Oxidation, hydration, oxidation, decarboxylation

Correct answer:

Oxidation, hydration, oxidation, thiolysis

Explanation:

The basic pattern of saturated fatty acid catabolism is that the chain is broken down two carbons at a time by release of acetyl-CoA. So, the challenge for the cell is to turn a two-carbon alkyl group at the end of the chain into a thioester (remember, acetyl-CoA is . To do this, the cell first desaturates the chain (removes some hydrogens by oxidation) to form a double bond. Then, water is added across the double bond to form an alcohol. Thinking back to organic chemistry, remember we can oxidize an alcohol to get a carbonyl, which is exactly what the cell does. The result is a ketone which reacts with the thiol of CoA-SH to form the new thioester acetyl-CoA, which is removed from the chain in the process of its formation.

Example Question #63 : Catabolic Pathways And Metabolism

Long-chain fatty acids are broken down through beta-oxidation in the mitochondrial matrix. The result is an abundance of acetyl-CoA which can then go onto the Krebs cycle and oxidative phosphorylation. However, when plasma glucose is low, stores of oxaloacetate are depleted to form more glucose, and the Krebs cycle becomes unable to incorporate all of the acetyl-CoA from beta-oxidation. 

What is the fate of the resultant excess of acetyl-CoA? 

Possible Answers:

Citrate production

Further beta-oxidation

Gluconeogenesis

Ketogenesis

Fermentation to ethanol

Correct answer:

Ketogenesis

Explanation:

When plasma glucose is low (or when plasma glucose is inaccessible to cells as in diabetes) and glycogen stores have been depleted, the cells resort to oxidation of fatty acids for energy. Because the brain cannot utilize fat for energy, though, and because glucose is an important fuel source for other tissues as well, the liver begins to produce glucose from Krebs cycle intermediates like oxaloacetate. Once these begin to run low, Krebs cycle function slows, and acetyl-CoA from fatty acid oxidation builds up. The body's solution to this problem is to have the liver convert this excess acetyl-CoA into ketone bodies, which can be utilized by the brain and other tissues for energy. 

Learning Tools by Varsity Tutors