Basic Geometry : Plane Geometry

Study concepts, example questions & explanations for Basic Geometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #321 : Plane Geometry

Find the diameter of a circle whose area is .

Possible Answers:

Correct answer:

Explanation:

Recall how to find the area of a circle:

Next, plug in the information given by the question.

From this, we can see that we can solve for the radius.

Now recall the relationship between the radius and the diameter.

Plug in the value of the radius to find the diameter.

Example Question #321 : Circles

Find the diameter of a circle whose area is .

Possible Answers:

Correct answer:

Explanation:

Recall how to find the area of a circle:

Next, plug in the information given by the question.

From this, we can see that we can solve for the radius.

Now recall the relationship between the radius and the diameter.

Plug in the value of the radius to find the diameter.

Example Question #321 : Circles

Find the diameter of a circle whose area is .

Possible Answers:

Correct answer:

Explanation:

Recall how to find the area of a circle:

Next, plug in the information given by the question.

From this, we can see that we can solve for the radius.

Now recall the relationship between the radius and the diameter.

Plug in the value of the radius to find the diameter.

Example Question #12 : How To Find The Length Of The Diameter

Find the diameter of a circle whose area is .

Possible Answers:

Correct answer:

Explanation:

Recall how to find the area of a circle:

Next, plug in the information given by the question.

From this, we can see that we can solve for the radius.

Now recall the relationship between the radius and the diameter.

Plug in the value of the radius to find the diameter.

Example Question #19 : How To Find The Length Of The Diameter

Find the diameter of a circle whose area is .

Possible Answers:

Correct answer:

Explanation:

Recall how to find the area of a circle:

Next, plug in the information given by the question.

From this, we can see that we can solve for the radius.

Now recall the relationship between the radius and the diameter.

Plug in the value of the radius to find the diameter.

Example Question #322 : Plane Geometry

Find the diameter of a circle whose area is .

Possible Answers:

Correct answer:

Explanation:

Recall how to find the area of a circle:

Next, plug in the information given by the question.

From this, we can see that we can solve for the radius.

Now recall the relationship between the radius and the diameter.

Plug in the value of the radius to find the diameter.

Example Question #21 : Diameter

Find the diameter of a circle that has a circumference of .

Possible Answers:

Correct answer:

Explanation:

Recall how to find the circumference of a circle:

If we divide both sides of the equation by , then we can write the following equation:

We can substitute in the given information to find the diameter of the circle in the question.

Example Question #321 : Plane Geometry

Find the diameter of a circle that has a circumference of .

Possible Answers:

Correct answer:

Explanation:

Recall how to find the circumference of a circle:

If we divide both sides of the equation by , then we can write the following equation:

We can substitute in the given information to find the diameter of the circle in the question.

Example Question #24 : Diameter

Find the diameter of a circle that has a circumference of .

Possible Answers:

Correct answer:

Explanation:

Recall how to find the circumference of a circle:

If we divide both sides of the equation by , then we can write the following equation:

We can substitute in the given information to find the diameter of the circle in the question.

Simplify.

Example Question #321 : Circles

Find the diameter of a circle that has a circumference of .

Possible Answers:

Correct answer:

Explanation:

Recall how to find the circumference of a circle:

If we divide both sides of the equation by , then we can write the following equation:

We can substitute in the given information to find the diameter of the circle in the question.

Simplify.

Learning Tools by Varsity Tutors