AP Physics 2 : Circuit Components

Study concepts, example questions & explanations for AP Physics 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #3 : Capacitor Energy

Imagine a capacitor with a magnitude of charge Q on either plate. This capacitor has area A, separation distance D, and is connected to a battery of voltage V. If some external agent pulls the capacitor apart such that D doubles, did the internal energy, U, stored in the capacitor increase, decrease or stay the same?

Possible Answers:

Stays constant

Increases

Increases by a factor of exactly 2

Decreases

Correct answer:

Decreases

Explanation:

Relevant equations:

 

We must note for this problem that the voltage, V, is kept constant by the battery. Looking at the second equation, if C changes (by changing D) then Q must change when V is held constant. This means that our formula for U must be altered. How can we make claims about U if Q and C are both changing? We need a constant variable in the equation for U so that we can make a direct relationship between D and U. If we plug in the second equation into the third we arrive at:

Now, we know that V is held constant by the battery, so when C decreases (because D doubled) we see that U actually decreases here. So it matters whether or not the capacitor is hooked up to a battery.

Example Question #291 : Electricity And Magnetism

Fill in the blanks.

Dielectrics __________ capacitance because capacitance is __________ related to electric field strength, and dielectrics __________ effective electric field strength.

Possible Answers:

decrease . . . inversely . . . increase

increase . . . inversely . . . increase

increase . . . directly . . . increase

decrease . . . directly . . . decrease

increase . . . inversely . . . reduce

Correct answer:

increase . . . inversely . . . reduce

Explanation:

The reason dielectrics reduce the effective electric field strength is because when a dielectric is added, the medium gets polarized, which produces an electric field in opposition of the existing electric field. 

When the electric field decreases, the capacitance increases because the plates are able to store more charge for the same amount of voltage applied, because there's less force repelling electrons from gathering on the plate.

Example Question #292 : Electricity And Magnetism

Two parallel conducting plates separated by a distance  are connected to a battery with voltage . If the distance between them is doubled and the battery stays connected, which of the following statements are correct?

Possible Answers:

The electric charge on the plates is halved

The potential difference between the plates is doubled

The capacitance is unchanged

The electric charge on the plates is doubled

The potential difference between the plates is halved

Correct answer:

The electric charge on the plates is halved

Explanation:

The equation for capacitance of parallel conducting plates is:

When the distance is doubled, the capacitance changes to:

The battery is still connected to the plates, the potential difference is unchanged. Because , and the capacitance is halved while the voltage stays the same,  must necessarily drop to half to account for the change.

Example Question #293 : Electricity And Magnetism

Photo 1

Capacitances are as follows:

What is the total capacitance of the system in the diagram above?

Possible Answers:

Correct answer:

Explanation:

Recall the equations used for adding capacitors:

From the diagram, capacitors A and B are in parallel, and capacitors C and D are in parallel, and those two systems are in series.

Use the equation above to find the equivalent capacitance of capacitors A and B.

Use the equation above to find the equivalent capacitance of capacitors C and D. 

Use the equation above to find the total capacitance by adding the two systems of capacitors, which are in series.

Therefore, the total capacitance is

Example Question #21 : Circuit Components

Photo 1

Capacitances are as follows:

Consider the diagram above. If the battery has a potential difference of , what is the total energy of the system once it's fully charged?

Possible Answers:

There is not enough information to find the energy of the system

Correct answer:

Explanation:

The equations for adding capacitors are:

To find the total energy, we need to know the total capacitance. To do that, we the capacitors together according to the rules above.

Capacitors A and B are in parallel.

Capacitors C and D are in parallel.

Add the systems of capacitors together. They are in series. 

The total capacitance is

The equation for finding the energy of a capacitor is:

Plug in known values and solve.

Therefore, the system, when fully charged, holds  of energy.

Example Question #295 : Electricity And Magnetism

A dielectric is put between the plates of an isolated charged parallel plate capacitor. Which of the following statements is true?

Possible Answers:

The capacitance decreases

The potential difference decreases

The potential difference increases

The charge on the plates decreases

The charge on the plates increases

Correct answer:

The potential difference decreases

Explanation:

When a dielectric is added to a capacitor, the capacitance increases. In our problem, it says the system is charged and isolated, which means no charge will escape the system. Therefore the charge on the plates will stay the same.

The equation for capacitance is:

 

Since the charge stays the same, and the capacitance increases, the potential difference must decrease so that  may increase.

Example Question #6 : Properties Of Capacitors And Dielectrics

Suppose I have a uniform electric field within a parallel plate capacitor.

Suppose the capacitor's plates are  in length and  in width, and the space between the plates is 

Given that the capacitance is , at what voltage difference is required for the capacitor to store  of charge? 

Possible Answers:

Correct answer:

Explanation:

To determine this, we can use the formula:

Where  is charge stored,  is voltage difference across a capacitor, and  is capacitance. 

Solving for ,

Example Question #1 : Capacitors And Electric Fields

 parallel-plate capacitor is connected to a constant voltage source. If the distance between the plates of this capacitor is  and the capacitor holds a charge of , what is the value of the electric field between the plates of this capacitor?

Possible Answers:

An electric field does not exist between the plates of a parallel-plate capacitor

Correct answer:

Explanation:

To solve this problem, we first need to solve for the voltage across the capacitor. For this, we'll need the formula for capacitance:

Solving for the voltage:

Now that we have the voltage, we can make use of the following equation to solve for the electric field:

Example Question #2 : Capacitors And Electric Fields

A set of parallel plate capacitors with a surface area of  has a total amount of charge equal to . What is the electric field between the plates?

Possible Answers:

Correct answer:

Explanation:

The equation for the electric field between two parallel plate capacitors is:

Sigma is the charge density of the plates, which is equal to:

We are given the area and total charge, so we use them to find the charge density.

Now that we have the charge density, divide it by the vacuum permittivity to find the electric field.

Example Question #2 : Capacitors And Electric Fields

Imagine a capacitor with a magnitude of charge Q on either plate. This capacitor has area A, separation distance D, and is not connected to a battery of voltage V. If some external agent pulls the capacitor apart such that D doubles, did the electric field, E, stored in the capacitor increase, decrease or stay the same?

Possible Answers:

Increases

Stays constant

Decreases

We need to know

Correct answer:

Stays constant

Explanation:

Relevant equations:

 

Considering we are dealing with regions of charge instead of a point charge (or a charge that is at least spherical symmetric), it would be wise to consider using the definition of the electric field here:

We are only considering magnitude so the direction of the electric field is not of concern. Considering a battery is not connected, we can't claim the V is constant. So we use the second equation to substitute for V in the above equation:

Substitute C from the first equation:

We see here that D actually cancels. This would not have been obvious without the previous substitution. Final result:

These 3 quantities are static in this situation so E does not change.

Learning Tools by Varsity Tutors