All AP Physics 1 Resources
Example Questions
Example Question #951 : Ap Physics 1
A horizontal spring with a spring constant of sits on a table and has a mass of attached to one end. The coefficient of kinetic friction between the mass and table is . If the spring is stretched to a distance of past its point of equilibrium and released, how many times does the mass pass through the point of equilibrium before coming to rest?
From the problem statement, we can calculate how much potential energy is initially stored in the spring. Since we are neglecting air resistance, we can say that all of this energy is lost through friction as the system comes to a stop.
Calculating initial potential energy:
Then we can write an expression for the force of friction on the mass:
We can then write an expression of the work done by friction:
Setting this equal to the initial potential energy:
Therefore, the mass travels a total distance of 20 meters before coming to rest. We know that the distance between maximum compression and maximum extension of the spring is 4 meters. Therefore, we can say that the mass travels from one maximum displacement to the other five times, passing through the equilibrium once each time. The mass passes through the equilibrium point 5 times.
Example Question #952 : Ap Physics 1
A spring with a spring constant of is compressed past its point of equilibrium. If internal friction results in an average power loss of , how long does the spring oscillate after being released until it comes to rest?
We can calculate the initial potential energy of the spring from what we are given in the problem statement:
Assuming the only energy loss of the spring is through internal friction, we can write:
Example Question #1 : Harmonic Motion
A block falls off of a table and collides with a spring on the floor with velocity . The spring has a spring constant of . How much is the spring compressed when the velocity of the block is ?
This problem can be solved by the conservation of energy. The block initially has kinetic energy equal to:
When the velocity of the block is zero, all the kinetic energy has been transferred to potential spring energy.
Example Question #1 : Springs
A homogenous mass of 0.25kg is fixed to a 0.5kg Hookean spring. When the mass/spring system is stretched 1cm from the equilibrium, it takes 3N of force to hold the mass in place. If the displacement from equilibrium is doubled, the force necessary to keep the system in place will __________.
increase by a factor of
increase by a factor of 4
remain the same
increase by a factor of 2
increase by a factor of 2
Since the spring is Hookean, the relationship between the force and displacement from equilibrium of the mass can be expressed by Hooke's Law:
Since this equation is linear, the force and displacement are directly proportional. Thus, when the displacement doubles, the force doubles.
Example Question #4 : Springs
Suppose that a 10kg object is sliding along a frictionless, horizontal surface at a speed of when suddenly, it hits and compresses a spring. If this spring has a spring constant of , what is the maximum length by which the spring is compressed?
To find the answer to this problem, we'll need to consider the case before the object collides with the spring, and also after it collides. Before the collision, all of the object's energy is in the form of kinetic energy.
Upon collision, the spring will be compressed by the moving object. The maximum displacement, however, will occur the instant the object stops moving. At this point, the object will no longer have any kinetic energy because it has stopped moving. Furthermore, all of the energy has now been transferred into the spring, and is held as spring potential energy.
Also, since we are told in the question stem that no friction is involved, we have a situation in which mechanical energy is conserved. In other words, we can relate the initial and final energies as equal to one another.
Set these two equations equal to each other, and solve for the maximum displacement.
Example Question #6 : Springs
What are the units of the spring constant in Hooke's Law?
Hooke's Law is:
here is in meters and is in newtons.
Solve for to see what the units are:
This means that the units of the spring constant, is:
We can ignore the negative sign when we determine units, as the negative sign only indicates the direction of the force.
Example Question #6 : Springs
A spring is compressed to its smallest point and then released. Assume that there is a frictional force that counters the motion of the spring. If we were to create a model plotting the position with time , which of the following could be appropriate for this system? Assume that at , is at its minimum point.
To determine which type of sinusoid is used, we have to look at its starting point and where it goes. It starts at its minimum and moves towards its maxima. The simplest model we can use is a negative cosine model, which will require no phase shifts.
At , will be at its minimal value.
However, there is also a counteracting frictional force that decreases the amplitude of the spring over time. One way to do so would be to add an term in front of the cosine, so that we have an ever decreasing amplitude as time moves on.
The only appropriate model is
Example Question #11 : Springs
A object is undergoing SHM with amplitude of . If the spring constant is , calculate the maximum speed of the object.
To solve this problem, we must use our knowledge of the relationship between angular frequency, the spring constant, and the mass.
We can then use this, and the derived maximum speed of the object in terms of the amplitude and angular frequency, to find the answer.
Example Question #911 : Newtonian Mechanics
In the lab, a student has created an oscillator by hanging a weight from a spring. The student releases the oscillator from rest and uses a sensor and computer to find the equation of motion for the oscillator:
The student then pulls the weight down twice as far and releases it from rest. What would the new equation of motion be for the oscillator?
Doubling the initial distance the weight is displaced from equilibrium doubles the amplitude, but does not change the period or the phase of the oscillator. So in the general equation of an oscillator:
, only the term changes, and it doubles.
Example Question #12 : Springs
In the lab, a student has created an oscillator by hanging a weight from a spring. The student releases the oscillator from rest and uses a sensor and computer to find the equation of motion for the oscillator:
The student then replaces the spring with a new spring whose spring constant, , is twice as large as that of the original spring.The student again releases the weight from rest from the same displacement from equilibrium. What would the new equation of motion be for the oscillator?
The amplitude does not change since the student pulls the weight the same displacement. Changing the spring constant changes the frequency of the oscillator. Since the period decreases, the frequency increases, but it does not double. The frequency and the period depend on the square root of the spring constant, so the frequency increases by . In the equation of motion for an oscillator,
, only the frequency , changes.
Certified Tutor
Certified Tutor