AP Calculus BC : Application of Integrals

Study concepts, example questions & explanations for AP Calculus BC

varsity tutors app store varsity tutors android store

Example Questions

Example Question #2 : Volume Of A Solid

What is the volume of the solid formed when the line \(\displaystyle y=\sqrt{x}\) is rotated around the \(\displaystyle y\)-axis from \(\displaystyle x=4\) to \(\displaystyle x = 9\)?

Possible Answers:

\(\displaystyle \frac{211\pi}{5}\)

\(\displaystyle 36\pi\)

\(\displaystyle 1\)

\(\displaystyle \frac{21\pi}{2}\)

Correct answer:

\(\displaystyle \frac{211\pi}{5}\)

Explanation:

To rotate a curve around the y-axis, first convert the function so that y is the independent variable by solving \(\displaystyle y=\sqrt{x}\) for x. This leads to the function \(\displaystyle x=y^2\)

We'll also need to convert the endpoints of the interval to y-values. Note that when \(\displaystyle x=4, \ y=2\), and when \(\displaystyle x = 9, y = 3.\) Therefore, the the interval being rotated is from \(\displaystyle y=2\ to\ y=3\).

The disk method is best in this case. The general formula for the disk method is 

\(\displaystyle V=\pi\int_{a}^{b}f^2(x)dx\), where V is volume, \(\displaystyle a\ and\ b\) are the endpoints of the interval, and \(\displaystyle f(x)\) the function being rotated. 

 

Substuting the function and endpoints from the problem at hand leads to the integral

\(\displaystyle V=\pi\int_{2}^{3}(y^2)^2dy=\pi\int_{2}^{3}y^4dy\).

To evaluate this integral, you must know the power rule. Recall that the power rule is 

\(\displaystyle \int{y^ndy}=\frac{y^{n+1}}{n+1}+c\)

\(\displaystyle \pi\int_{2}^{3}y^4dy=\pi[\frac{y^5}{5}]_{2}^{3}\)

\(\displaystyle =\pi\left[\frac{3^5}{5}-\frac{2^5}{5}\right]=\pi\left[\frac{243}{5}-\frac{32}{5}\right]\)

\(\displaystyle =\frac{211\pi}{5}\).

Example Question #1 : Volume Of A Solid

Find the volume of the solid generated when the function 

 \(\displaystyle f(x)=x\)

is revolved around the x-axis on the interval \(\displaystyle [0,8]\).

Hint: Use the method of cylindrical disks.

Possible Answers:

\(\displaystyle V=\frac{512\pi}{3}\) units cubed

\(\displaystyle V=\frac{400\pi}{3}\) units cubed

\(\displaystyle V=215\pi\) units cubed

\(\displaystyle V=\frac{625\pi}{3}\) units cubed

Correct answer:

\(\displaystyle V=\frac{512\pi}{3}\) units cubed

Explanation:

The formula for the volume is given as

\(\displaystyle V=\pi \int_{a}^{b} r^2 \, dx\)

where \(\displaystyle r=f(x)\) and the bounds on the integral come from the interval \(\displaystyle [a,b]\).

As such, 

\(\displaystyle V=\pi \int_{0}^{8} x^2 \, dx\)

When taking the integral, we will use the inverse power rule which states

\(\displaystyle \int x^n=\frac{x^{n+1}}{n+1}\)

Applying this rule we get

\(\displaystyle \pi \int_{0}^{8} x^2 \, dx=\pi \left(\frac{x^3}{3}\right) \left.\begin{matrix} \\ \end{matrix}\right|_{0}^{8}\)

And by the corollary of the First Fundamental Theorem of Calculus

\(\displaystyle \pi \left(\frac{x^3}{3}\right) \left.\begin{matrix} \\ \end{matrix}\right|_{0}^{8}=\pi \left(\left[\frac{8^3}{3}\right]-\left[\frac{0^3}{3}\right]\right)\)

\(\displaystyle =\frac{512\pi}{3}\)

As such,

\(\displaystyle V=\frac{512\pi}{3}\) units cubed

Example Question #1 : Volume Of Cross Sections And Area Of Region

Using the method of cylindrical disks, find the volume of the region revolved around the x-axis of the graph of 

\(\displaystyle f(x)=-x^2+10x+3\)

on the interval 

\(\displaystyle [0,10]\)

Possible Answers:

\(\displaystyle 15000\pi\) units cubed

\(\displaystyle \frac{13270}{3}\pi\) units cubed

\(\displaystyle 20000\pi\) units cubed

\(\displaystyle 10000\pi\) units cubed

Correct answer:

\(\displaystyle \frac{13270}{3}\pi\) units cubed

Explanation:

The formula for volume of the region revolved around the x-axis is given as 

\(\displaystyle V=\pi \int_{a}^{b} r^2\, dx\)

where \(\displaystyle r=f(x)\)

As such

\(\displaystyle V=\pi \int_{0}^{10} (-x^2+10x+3)^2\,dx = \pi \int_{0}^{10}x^4-20x^3+94x^2+60x+9\,dx\)

When taking the integral, we use the inverse power rule which states

\(\displaystyle \int x^n\,dx = \frac{x^{n+1}}{n+1}\)

Applying this rule term by term we get

\(\displaystyle = \pi \int_{0}^{10}x^4-20x^3+94x^2+60x+9\,dx = \pi\left ( \frac{x^5}{5} - \frac{20x^4}{4} + \frac{94x^3}{3} + \frac{60x^2}{2} + 9x\right |_{0}^{10}\)

And by the corollary of the Fundamental Theorem of Calculus 

\(\displaystyle \pi\left ( \frac{x^5}{5} - \frac{20x^4}{4} + \frac{94x^3}{3} + \frac{60x^2}{2} + 9x\right |_{0}^{10}=\pi \left ( \left [ \frac{(10)^5}{5}-\frac{20(10)^4}{4}+\frac{94(10)^3}{3}+\frac{60(10)^2}{2}+9(10) \right ]-0 \right )\)

\(\displaystyle =\frac{13270}{3}\pi\)

As such the volume is

\(\displaystyle \frac{13270}{3}\pi\) units cubed

Example Question #11 : Application Of Integrals

Find the volume of the solid generated by rotating about the y-axis the region under the curve \(\displaystyle y =\sqrt{x}\), from \(\displaystyle 0\) to \(\displaystyle 4\).

Possible Answers:

\(\displaystyle \frac{256}{7}\pi^2\)

\(\displaystyle \frac{\pi}{2}\)

None of the other answers

\(\displaystyle \frac{64}{3}\pi\)

\(\displaystyle \frac{128}{5}\pi\)

Correct answer:

\(\displaystyle \frac{128}{5}\pi\)

Explanation:

Since we are revolving a function of \(\displaystyle x\) around the y-axis, we will use the method of cylindrical shells to find the volume.

 

Using the formula for cylindrical shells, we have

 

\(\displaystyle \int_{0}^{4}2\pi x (\sqrt{x})dx\)

\(\displaystyle =\int_{0}^{4}2\pi x^{3/2}dx\)

\(\displaystyle =[2\pi x^{5/2}]^{4}_{0}\)

\(\displaystyle =\frac{128}{5}\pi\).

 

Example Question #11 : Volume Of Cross Sections And Area Of Region

Find the area bound by the curve of g(t), the x and y axes, and the line \(\displaystyle t=\frac{3 \pi}{4}\)

\(\displaystyle g(t)=4sin(t)-6cos(t)\)

Possible Answers:

\(\displaystyle -1.41\)

\(\displaystyle 2.59\)

\(\displaystyle -2.59\)

\(\displaystyle 11.07\)

Correct answer:

\(\displaystyle 2.59\)

Explanation:

Find the area bound by the curve of g(t), the x and y axes, and the line \(\displaystyle t=\frac{3 \pi}{4}\)

\(\displaystyle g(t)=4sin(t)-6cos(t)\)

We are asked to find the area under a curve. This sounds like a job for an integral.

We need to integrate our function from 0 to \(\displaystyle t=\frac{3 \pi}{4}\). These will be our limits of integration. With that in mind, our integral look like this.

\(\displaystyle G(t)=\int_0^\frac{3\pi}{4}4sin(t)-6cos(t)dt\)

Now, we need to recall the rules for integrating sine and cosine.

\(\displaystyle 1) \int sin(t)dt=-cos(t)+c\)

\(\displaystyle 2) \int cos(t)dt=sin(t)+c\)

With these rules in mind, we can integrate our original function to get:

\(\displaystyle G(t)=\int_0^\frac{3\pi}{4}4sin(t)-6cos(t)dt=-4cos(t)-6sin(t)+c|_0^{\frac{3 \pi}{4}}\)

\(\displaystyle G(t)=-4cos(t)-6sin(t)+c|_0^{\frac{3 \pi}{4}}\)

Now, we just need to evaluate our new function at the given limits. Let's start with 0

\(\displaystyle G(0)=-4cos(0)-6sin(0)+c=-4-0+c=-4+c\)

And our upper limit...

\(\displaystyle G({\frac{3 \pi}{4}})=-4cos({\frac{3 \pi}{4}})-6sin({\frac{3 \pi}{4}})+c\)

\(\displaystyle -4cos({\frac{3 \pi}{4}})-6sin({\frac{3 \pi}{4}})+c=(-4)\frac{-\sqrt{2}}{2}-(6)\frac{-\sqrt{2}}{2}+c\)

\(\displaystyle (-4)\frac{-\sqrt{2}}{2}-(6)\frac{\sqrt{2}}{2}+c=2\sqrt{2}-3\sqrt{2}+c=-\sqrt{2}+c\)

Now, we need to take the difference between our limits:

\(\displaystyle G(\frac{3 \pi}{4})-G(0)=(-\sqrt{2}+c)-(-4+c)=-\sqrt{2}+4\approx2.585\)

So, our answer is 2.59

 

Example Question #12 : Application Of Integrals

Determine the length of the following function between \(\displaystyle 1\leq t\leq 4\)

\(\displaystyle v(t)=\frac{2}{3}(t-1)^{\frac{3}{2}}\)

Possible Answers:

\(\displaystyle \frac{14}{3}\)

\(\displaystyle -\frac{7}{3}\)

\(\displaystyle \frac{16}{9}\)

\(\displaystyle \frac{7}{3}\)

\(\displaystyle -\frac{14}{3}\)

Correct answer:

\(\displaystyle \frac{14}{3}\)

Explanation:

In order to begin the problem, we must first remember the formula for finding the arc length of a function along any given interval:

\(\displaystyle L=\int ds\)

where ds is given by the equation below:

 \(\displaystyle ds=\sqrt{1+(\frac{dy}{dx})^{2}}dx\)

We can see from our equation for ds that we must find the derivative of our function, which in our case is dv/dt instead of dy/dx, so we begin by differentiating our function v(t) with respect to t:

\(\displaystyle \frac{dv}{dt}=(t-1)^{\frac{1}{2}}=\sqrt{t-1}\)

Now we can plug this into the given equation to find ds:

\(\displaystyle ds=\sqrt{1+(\frac{dv}{dt})^{2}}dt=\sqrt{1+(\sqrt{t-1})^{2}}=\sqrt{1+t-1}=\sqrt{t}\)

Our last step is to plug our value for ds into the equation for arc length, which we can see only involves integrating ds. The interval along which the problem asks for the length of the function gives us our limits of integration, so we simply integrate ds from t=1 to t=4:

\(\displaystyle L=\int ds=\int_{1}^{4}\sqrt{t}dt=[\frac{2}{3}t^{\frac{3}{2}}]_{1}^{4}\)

\(\displaystyle =\frac{2}{3}(4)^{\frac{3}{2}}-\frac{2}{3}(1)^{\frac{3}{2}}=\frac{16}{3}-\frac{2}{3}=\frac{14}{3}\)

Example Question #1 : Length Of Curve, Distance Traveled, Accumulated Change, Motion Of Curve

In physics, the work done on an object is equal to the integral of the force on that object dotted with its displacent.

This looks like \(\displaystyle \small W=\int(F\cdot ds)\) (\(\displaystyle \small W\) is work, \(\displaystyle \small F\) is force, and \(\displaystyle \small ds\) is the infinitesimally small displacement vector). For a force whose direction is the line of motion, the equation becomes \(\displaystyle \small \small W=\int (Fdx)\).

If the force on an object as a function of displacement is \(\displaystyle \small F(x)=3x^{2}+x\), what is the work as a function of displacement \(\displaystyle \small W(x)\)? Assume \(\displaystyle \small W(0)=0\) and the force is in the direction of the object's motion.

Possible Answers:

\(\displaystyle \small W(x)=x^{3}+x^{2}/2\)

\(\displaystyle \small \small W(x)=3x^{3}/2+x^{2}\)

\(\displaystyle \small \small W(x)=6x+1\)

Not enough information

\(\displaystyle \small \small W(x)=3x^{2}+x\)

Correct answer:

\(\displaystyle \small W(x)=x^{3}+x^{2}/2\)

Explanation:

\(\displaystyle \small \small W=\int (Fdx)\), so \(\displaystyle \small W=\int(3x^{2}+x)dx\).

Both the terms of the force are power terms in the form \(\displaystyle \small ax^{n}\), which have the integral \(\displaystyle \small \frac{a}{n+1}x^{n+1}\), so the integral of the force is \(\displaystyle \small x^{3}+x^{2}/2+c\).

We know 

\(\displaystyle \small W(0)=0\rightarrow 0^{3}+0^{2}/2+c=0 \therefore c=0\).

This means 

\(\displaystyle \small W(x)=x^{3}+x^{2}/2\).

Example Question #3 : Length Of Curve, Distance Traveled, Accumulated Change, Motion Of Curve

Give the arclength of the graph of the function \(\displaystyle f(x) = \frac{2}{3} x \sqrt{x}\) on the interval \(\displaystyle \left [ 0,3 \right ]\).

Possible Answers:

\(\displaystyle \frac{16}{3}\)

\(\displaystyle \frac{14}{3}\)

\(\displaystyle 3\)

\(\displaystyle \frac{11}{3}\)

\(\displaystyle 5\)

Correct answer:

\(\displaystyle \frac{14}{3}\)

Explanation:

The length of the curve of \(\displaystyle f(x)\) on the interval \(\displaystyle [a,b]\) can be determined by evaluating the integral

\(\displaystyle \int_{a}^{b} \sqrt{1 + f'(x) ^{2}} \; \mathrm{d}x\).

\(\displaystyle f(x) = \frac{2}{3} x \sqrt{x} = \frac{2}{3} x^{\frac{3}{2}}\)

so

\(\displaystyle f(x) = \frac{2}{3} \cdot \frac{3}{2} x^{\frac{1}{2}} = \sqrt{x}\) .

The above integral becomes 

\(\displaystyle \int_{0}^{3} \sqrt{1 + (\sqrt{x}) ^{2}} \; \mathrm{d}x\)

\(\displaystyle \int_{0}^{3} \sqrt{x+1} \; \mathrm{d}x\)

Substitute \(\displaystyle u = x + 1\). Then \(\displaystyle \frac{\mathrm{d} u}{\mathrm{d} x} = 1\)\(\displaystyle \mathrm{d} u = \mathrm{d} x\), and the integral becomes

\(\displaystyle \int_{1}^{4} \sqrt{u} \; \mathrm{d}u = \int_{1}^{4} u^{\frac{1}{2}} \; \mathrm{d}u\)

\(\displaystyle = \left.\begin{matrix} \frac{u^{\frac{3}{2}}}{\frac{3}{2}} \\ \\ \end{matrix}\right| \begin{matrix} 4\\ \\ 1 \end{matrix}\)

\(\displaystyle = \left.\begin{matrix} \frac{2u \sqrt{u}}{3} \\ \\ \end{matrix}\right| \begin{matrix} 4\\ \\ 1 \end{matrix}\)

\(\displaystyle = \frac{2 \cdot 4 \sqrt{4}}{3} - \frac{2 \cdot 1 \sqrt{1}}{3}\)

\(\displaystyle = \frac{2 \cdot 4 \cdot 2 }{3} - \frac{2 \cdot 1 \cdot 1}{3} = \frac{16}{3} - \frac{2}{3} =\frac{14}{3}\)

Example Question #1 : Length Of Curve, Distance Traveled, Accumulated Change, Motion Of Curve

Give the arclength of the graph of the function \(\displaystyle f(x) = \frac{1}{2} \ln \left ( \cos 2 x \right )\) on the interval \(\displaystyle \left [ 0, \frac{\pi}{8} \right ]\).

Possible Answers:

\(\displaystyle \frac{1 }{2}+\frac{1 }{2} \sqrt{2}\)

\(\displaystyle \ln \left ( 1 + \sqrt{2} \right )\)

\(\displaystyle \frac{1}{2} \ln \left ( 1 + \sqrt{2} \right )\)

\(\displaystyle 1 + \sqrt{2}\)

\(\displaystyle 1+\frac{1 }{2} \ln 2\)

Correct answer:

\(\displaystyle \frac{1}{2} \ln \left ( 1 + \sqrt{2} \right )\)

Explanation:

The length of the curve of \(\displaystyle f(x)\) on the interval \(\displaystyle [a,b]\) can be determined by evaluating the integral

\(\displaystyle \int_{a}^{b} \sqrt{1 + f'(x) ^{2}} \; \mathrm{d}x\).

\(\displaystyle f(x) = \frac{1}{2} \ln \left ( \cos 2 x \right )\), so 

\(\displaystyle f'(x) = \frac{1}{2} \cdot \frac{\frac{\mathrm{d} }{\mathrm{d} x}\cos 2 x}{\cos 2 x} = \frac{1}{2} \cdot \frac{-2 \sin 2x}{\cos 2 x} = - \tan 2x\)

The integral becomes

\(\displaystyle \int_{0}^{ \frac{\pi}{8}} \sqrt{1 + \left ( - \tan 2x \right )^{2}} \; \mathrm{d}x\)

\(\displaystyle = \int_{0}^{ \frac{\pi}{8}} \sqrt{1 + \tan ^{2} 2x } \; \mathrm{d}x\)

\(\displaystyle = \int_{0}^{ \frac{\pi}{8}} \sqrt{\sec ^{2} 2x } \; \mathrm{d}x\)

\(\displaystyle = \int_{0}^{ \frac{\pi}{8}} \sec 2x \; \mathrm{d}x\)

Use substitution - set \(\displaystyle u = 2x\). Then \(\displaystyle \frac{\mathrm{d} u}{\mathrm{d} x} = 2\), and \(\displaystyle \mathrm{d} x = \frac{1}{2}\mathrm{d} u\). The bounds of integration become \(\displaystyle 2 \cdot 0 = 0\) and \(\displaystyle 2 \cdot \frac{\pi}{8} = \frac{\pi}{4}\), and the integral becomes

\(\displaystyle \frac{1}{2} \int_{0}^{ \frac{\pi}{4}} \sec u \; \mathrm{d}u\)

\(\displaystyle =\left.\begin{matrix}\frac{1}{2} \ln | \sec u + \tan u | \\ \\ \end{matrix}\right|\begin{matrix} \frac{\pi}{4}\\ \\ 0 \end{matrix}\)

\(\displaystyle =\frac{1}{2} \ln \left | \sec \frac{\pi}{4} + \tan \frac{\pi}{4} \right | - \frac{1}{2} \ln | \sec 0 + \tan 0 |\)

\(\displaystyle =\frac{1}{2} \ln \left | \sqrt{2} + 1 \right | -\frac{1}{2} \ln | 1 + 0 |\)

\(\displaystyle =\frac{1}{2} \ln \left ( 1 + \sqrt{2} \right ) -\frac{1}{2} \ln 1\)

\(\displaystyle =\frac{1}{2} \ln \left ( 1 + \sqrt{2} \right ) - 0\)

\(\displaystyle =\frac{1}{2} \ln \left (1 + \sqrt{2} \right )\)

Example Question #1 : Average Values And Lengths Of Functions

What is the length of the curve \(\displaystyle g(x)=x^{\frac{3}{2}}\) over the interval \(\displaystyle 0\le x\le4\)?

Possible Answers:

\(\displaystyle \frac{4\pi}{3}\)

\(\displaystyle 4\sqrt2-1\)

\(\displaystyle \frac{56}{27}\)

\(\displaystyle \frac{8}{27}(10\sqrt{10}-1)\)

Correct answer:

\(\displaystyle \frac{8}{27}(10\sqrt{10}-1)\)

Explanation:

The general formula for finding the length of a curve \(\displaystyle f(x)\) over an interval \(\displaystyle [a,b]\) is \(\displaystyle \int_{a}^{b}\sqrt{1+\left(\frac{dy}{dx}\right)^2}\ dx\)

In this example, the arc length can be found by computing the integral

\(\displaystyle \int_{0}^{4}\sqrt{1+(\frac{d}{dx}x^{\frac{3}{2}})^2}\ dx\).

The derivative of \(\displaystyle x^{\frac{3}{2}}\) can be found using the power rule, \(\displaystyle \frac{d}{dx} x^n=nx^{n-1}\), which leads to 

\(\displaystyle \int_{0}^{4}\sqrt{1+\left(\frac{3}{2}x^{\frac{1}{2}}\right)^2}\ dx=\int_{0}^{4}\sqrt{1+\frac{9}{4}x}\ dx\)

At this point, a substitution is useful.

Let 

\(\displaystyle u=1+\frac{9}{4}x,\ du=\frac{9}{4}dx,\frac{4}{9}du=dx\).

We can also express the limits of integration in terms of \(\displaystyle u\) to simplify computation. When \(\displaystyle x=0, u=1\), and when \(\displaystyle x = 4, u=10\).

Making these substitutions leads to 

\(\displaystyle \int_{0}^{4}\sqrt{1+\frac{9}{4}x}\ dx=\int_{1}^{10}\frac{4}{9}\sqrt{u}du=\frac{4}{9}\int_{1}^{10}u^{\frac{1}{2}}du\).

Now use the power rule, which in general is \(\displaystyle \int x^n=\frac{x^{n+1}}{n+1}+c\), to evaluate the integral. 

\(\displaystyle \frac{4}{9}\int_{1}^{10}u^{\frac{1}{2}}du=\frac{4}{9}\frac{u^{\frac{3}{2}}}{\frac{3}{2}}|_{1}^{10}\)

\(\displaystyle =\frac{8}{27}(10^{\frac{3}{2}}-1^\frac{3}{2})=\frac{8}{27}(10\sqrt{10}-1)\)

Learning Tools by Varsity Tutors