All AP Calculus AB Resources
Example Questions
Example Question #1 : Continunity As A Property Of Functions
is differentiable for which of the following values of ?
is not differentiable at and because the values are discontinuities. is not differentiable at because that point is a corner, indicating that the one-side limits at are different. is differentiable:the one side limits are the same and the point is continuous.
Example Question #1 : Geometric Understanding Of Graphs Of Continuous Functions
Consider the graph of above. What can we say about when ?
Two or more of these are correct.
has a horizontal tangent at .
has a removable discontinuity at .
None of these are correct.
is discontinuous at because there is a sharp turn at .
has a horizontal tangent at .
Note that , indicating that there is a horizontal tangent on at . More specifically, the derivative is the slope of the tangent line. If the slope of the tangent line is 0, then the tangent is horizontal.
The other two are incorrect because sharp turns only apply when we want to take the derivative of something. The derivative of a function at a sharp turn is undefined, meaning the graph of the derivative will be discontinuous at the sharp turn. (To see why, ask yourself if the slope at is positive 1 or negative 1?) On the other hand, integration is less picky than differentiation: We do not need a smooth function to take an integral.
In this case, to get from to , we took an integral, so it didn't matter that there was a sharp turn at the specified point. Thus, neither function had any discontinuities.
Example Question #1 : Integrals
Evaluate .
Does not exist
Even though an antideritvative of does not exist, we can still use the Fundamental Theorem of Calculus to "cancel out" the integral sign in this expression.
. Start
. You can "cancel out" the integral sign with the derivative by making sure the lower bound of the integral is a constant, the upper bound is a differentiable function of , , and then substituting in the integrand. Lastly the Theorem states you must multiply your result by (similar to the directions in using the chain rule).
.
Example Question #1 : Use Of The Fundamental Theorem To Represent A Particular Antiderivative, And The Analytical And Graphical Analysis Of Functions So Defined
The graph of a function is drawn below. Select the best answers to the following:
What is the best interpretation of the function?
Which plot shows the derivative of the function ?
The function represents the area under the curve from to some value of .
Do not be confused by the use of in the integrand. The reason we use is because are writing the area as a function of , which requires that we treat the upper limit of integration as a variable . So we replace the independent variable of with a dummy index when we write down the integral. It does not change the fundamental behavior of the function or .
The graph of the derivative of is the same as the graph for . This follows directly from the Second Fundamental Theorem of Calculus.
If the function is continuous on an interval containing , then the function defined by:
has for its' derivative .
Example Question #1 : Integrals
Evaluate
Here we could use the Fundamental Theorem of Calculus to evaluate the definite integral; however, that might be difficult and messy.
Instead, we make a clever observation of the graph of
Namely, that
This means that the values of the graph when comparing x and -x are equal but opposite. Then we can conclude that
Example Question #1 : Relationship Between Differentiability And Continuity
The function is differentiable at the point . List which of the following statements must be true about :
1) The limit exists.
_________________________________________________________
2)
_________________________________________________________
3)
_________________________________________________________
4)
_________________________________________________________
5)
1,3,4,and 5
1, 3, and 5
1, 2, and 4
All must be true.
1, and 5
1, 2, and 4
1) If a function is differentiable, then by definition of differentiability the limit defined by,
exists. Therefore (1) is required by definition of differentiability. _______________________________________________________________
2) If a function is differentiable at a point then it must also be continuous at that point. (This is not conversely true).
For a function to be continuous at a point we must have:
Therefore (2) and (4) are required.
-----------------------------------------------------------------------------------------
3)
This is not required, the left side of the equation is the definition of a derivative at a point for a function . The derivative at a point does not have to equal to the function value at that point, it is equal to the slope at that point. Therefore 3 does not have to be true.
However, we can note that it is possible for a function and its' derivative to be equal for a given point. Sine and cosine, for instance will intersect periodically. Another example would be the exponential function which has itself as its' derivative .
______________________________________________________________
4) See 2
_______________________________________________________________
5)
Again, the function does not have to approach the same limit as its' derivative. It is possible for a function to behave in this manner, such as in the case of sine and its' derivative cosine, which will both have the same limit at points where they intersect.
Example Question #1 : Concept Of The Derivative
When the limit fails to exist,
None of the above necessarily
The function is not differentiable at .
The function is not continuous at .
The function is not defined at .
The function is not differentiable at .
By definition of differentiability, when the limit exists. When exists, we say the function is 'differentiable at '.
Example Question #2 : Concept Of The Derivative
Which of the following functions is differentiable at , but not continuous there?
They are all differentiable and continuous at
They are all differentiable and continuous at
All of the functions are differentiable at . If you examine the graph of each of the functions, they are all defined at , and do not have a corner, cusp, or a jump there; they are all smooth and connected (Not necessarily everywhere, just at ). Additionally it is not possible to have a function that is differentiable at a point, but not continuous at that same point; differentiablity implies continuity.
Example Question #1 : Concept Of The Derivative
For which of the following functions does a limit exist at , but not a y-value?
To answer the question, we must find an equation which satisfies two criteria:
(1) it must have limits on either side of that approach the same value and (2) it must have a hole at .
Each of the possible answers provide situations which demonstrate each combination of (1) and (2). That is to say, some of the equations include both a limit and a y-value at , neither, or,in the case of the piecewise function, a y-value and a limit that does not exist.
In the function, , the numerator factors to
while the denominator factors to . As a result, the graph of this
function resembles that for , but with a hole at . Therefore, the limit
at exists, even though the y-value is undefined at .
Example Question #111 : Ap Calculus Ab
Find the slope of the curve at the point with x-coordinate .
To find the slope at a point, we take the derivative of , substitute in , and simplify.
.
.