Algebra II : Square Roots

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #11 : Radicals

Simplify:  \displaystyle \sqrt{-72}

Possible Answers:

\displaystyle 3i\sqrt6

\displaystyle 3i\sqrt6

\displaystyle 24i\sqrt3

\displaystyle 6i\sqrt2

Correct answer:

\displaystyle 6i\sqrt2

Explanation:

Rewrite the radical using common factors.

\displaystyle \sqrt{-72}=\sqrt{-1}\cdot\sqrt{9}\cdot\sqrt{4}\cdot \sqrt{2}

Recall that \displaystyle \sqrt{-1} is equivalent to the imaginary term \displaystyle i.

Simplify the roots.

\displaystyle i\cdot 3\cdot 2\cdot \sqrt2

The answer is:  \displaystyle 6i\sqrt2

Example Question #11 : Radicals

Evaluate:  \displaystyle -\sqrt{121}+\sqrt{64}-\sqrt{16}

Possible Answers:

\displaystyle -7

\displaystyle 5

\displaystyle 4

\displaystyle 7

\displaystyle -3

Correct answer:

\displaystyle -7

Explanation:

Evaluate each square root.  The square root of the number is equal to a number multiplied by itself.

\displaystyle -\sqrt{121}+\sqrt{64}-\sqrt{16} =-11+8-4 =-7

The answer is:  \displaystyle -7

Example Question #3912 : Algebra Ii

Simplify the radicals:  \displaystyle \sqrt{16}+\sqrt{36}- \sqrt[4]{16}

Possible Answers:

\displaystyle 6

\displaystyle 8

\displaystyle -10

\displaystyle -6

\displaystyle 4

Correct answer:

\displaystyle 8

Explanation:

Simplify each radical.  A number inside the radical means that we are looking for a number times itself that will equal to that value inside the radical.

\displaystyle \sqrt{16}=4

\displaystyle \sqrt{36}=6

For a fourth root term, we are looking for a number that multiplies itself four times to get the number inside the radical.

\displaystyle \sqrt[4]{16} =2

Replace the values and determine the sum.

\displaystyle \sqrt{16}+\sqrt{36}- \sqrt[4]{16} = 4+6-2 = 8

The answer is:  \displaystyle 8

Example Question #14 : Understanding Radicals

Simplify the radicals:  \displaystyle \sqrt{144\times 25\times 36}

Possible Answers:

\displaystyle 280

\displaystyle 360

\displaystyle 480

\displaystyle 420

\displaystyle 132

Correct answer:

\displaystyle 360

Explanation:

Do not multiply the terms inside the radical.  Instead, the terms inside the radical can be simplified term by term.

\displaystyle \sqrt{144\times 25\times 36} = \sqrt{144}\times \sqrt{25}\times \sqrt{36}

Simplify each square root.

\displaystyle 12\times 5\times 6 = 360

The answer is:  \displaystyle 360

Example Question #11 : Understanding Radicals

Solve:  \displaystyle 2\sqrt{36}-4\sqrt{100}

Possible Answers:

\displaystyle -28

\displaystyle -6

\displaystyle -3\sqrt6

\displaystyle -14

\displaystyle -9\sqrt2

Correct answer:

\displaystyle -28

Explanation:

Solve by evaluating the square roots first.  

\displaystyle \sqrt{36} = 6

\displaystyle \sqrt{100}=10

Substitute the terms back into the expression.

\displaystyle 2\sqrt{36}-4\sqrt{100} = 2(6)-4(10) = 12-40= -28

The answer is:  \displaystyle -28

Example Question #16 : Understanding Radicals

Solve the square roots: \displaystyle \sqrt9+\sqrt{64}+\sqrt{36+64}

Possible Answers:

\displaystyle 32

\displaystyle 18

\displaystyle 21

\displaystyle \sqrt{221}

\displaystyle 59

Correct answer:

\displaystyle 21

Explanation:

Evaluate each radical.  The square root of a certain number will output a number that will equal the term inside the radical when it's squared.

\displaystyle \sqrt{9}=3

\displaystyle \sqrt{64}=8

\displaystyle \sqrt{36+64} = \sqrt{100} =10

Replace all the terms.

\displaystyle \sqrt9+\sqrt{64}+\sqrt{36+64} = 3+8+10 = 21

The answer is:  \displaystyle 21

Example Question #17 : Understanding Radicals

Evaluate:  \displaystyle \sqrt{-200}

Possible Answers:

\displaystyle 10i\sqrt2

\displaystyle -10i\sqrt2

\displaystyle 20i

\displaystyle -10\sqrt2

Correct answer:

\displaystyle 10i\sqrt2

Explanation:

This expression is imaginary.  To simplify, we will need to factor out the imaginary term \displaystyle i=\sqrt{-1} as well as the perfect square.

\displaystyle \sqrt{-200} = \sqrt{-1}\cdot \sqrt{100}\cdot \sqrt2

Simplify the terms.

\displaystyle i\cdot 10\cdot \sqrt2

The answer is:  \displaystyle 10i\sqrt2

Example Question #1251 : Mathematical Relationships And Basic Graphs

Solve:  \displaystyle \sqrt{81}+\sqrt{225}-\sqrt{10000}

Possible Answers:

\displaystyle -54

\displaystyle 24

\displaystyle -76

\displaystyle -36

\displaystyle -96

Correct answer:

\displaystyle -76

Explanation:

Evaluate each square root.  The square root identifies a number that multiplies by itself to equal the number inside the square root.

\displaystyle \sqrt{81}+\sqrt{225}-\sqrt{10000} = 9+15-100

Determine the sum.

The answer is:  \displaystyle -76

Example Question #3913 : Algebra Ii

Evaluate, if possible:  \displaystyle 2\sqrt{-64}-3\sqrt{-16}

Possible Answers:

\displaystyle -4i

\displaystyle 4i

\displaystyle 2+i

\displaystyle 4i\sqrt2

Correct answer:

\displaystyle 4i

Explanation:

The negative numbers inside the radical indicates that we will have imaginary terms.

Recall that \displaystyle i=\sqrt{-1}.

Rewrite the radicals using \displaystyle \sqrt{-1} as the common factor.

\displaystyle 2\sqrt{-64}-3\sqrt{-16} = 2\cdot \sqrt{-1}\cdot \sqrt{64}-3\cdot \sqrt{-1}\cdot\sqrt{16}

Replace the terms and evaluate the square roots.

\displaystyle 2\cdot i\cdot8 - 3 \cdot i \cdot4 =16i-12i = 4i

The answer is:  \displaystyle 4i

Example Question #13 : Square Roots

Simplify:  \displaystyle \sqrt{100}-\sqrt{64}-\sqrt{169}

Possible Answers:

\displaystyle 31

\displaystyle -11

\displaystyle -31

\displaystyle 15

\displaystyle 23

Correct answer:

\displaystyle -11

Explanation:

Evaluate by solving each square root first.  The square root of a number is a number that multiplies by itself to achieve the number inside the square root.

\displaystyle \sqrt{100} =10

\displaystyle \sqrt{64}=8

\displaystyle \sqrt{169} = 13

Rewrite the expression.

\displaystyle \sqrt{100}-\sqrt{64}-\sqrt{169} = 10-8-13

The answer is:  \displaystyle -11

Learning Tools by Varsity Tutors