Algebra II : Solving Quadratic Equations

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #31 : Quadratic Formula

Solve \displaystyle -3x^2+6x-12{}.

Possible Answers:

\displaystyle x=6;x=-\frac{2}{3}

\displaystyle x=1;x=-1

\displaystyle x=-3

\displaystyle x=3;x=2

No real solutions

Correct answer:

No real solutions

Explanation:

\displaystyle -3x^2+6x-12=0

This function cannot be factor therefore, use the quadratic equation.

\displaystyle \frac{-b\pm\sqrt{b^2-4ac}}{2a}

Since the original equation is in the form \displaystyle ax^2+bx+c where 

\displaystyle a=-3, b=6, c=-12.

Therefore,

\displaystyle \frac{-6\pm\sqrt{6^2-4(-3)(-12)}}{2(-3)}

\displaystyle \frac{-6\pm\sqrt{36-144}}{-6}

\displaystyle \frac{-6\pm\sqrt{-108}}{-6}

Since the value of the discriminant (the value beneath the square root symbol) is negative, this function has no real solutions.

 

Example Question #172 : Solving Quadratic Equations

Solve \displaystyle x^2+8x-2=0.

Possible Answers:

\displaystyle x={-4\pm {3\sqrt{2}}}

\displaystyle x={4\pm {3\sqrt{2}}}

\displaystyle x={-4\pm {3\sqrt{6}}}

\displaystyle x={-4\pm {6\sqrt{2}}}

\displaystyle x={-8\pm {3\sqrt{2}}}

Correct answer:

\displaystyle x={-4\pm {3\sqrt{2}}}

Explanation:

\displaystyle x^2+8x-2=0

This particular function cannot be factored therefore, use the quadratic formula to solve.

\displaystyle \frac{-b\pm {\sqrt{b^2-4ac}}}{2a}

Since the function is in the form \displaystyle ax^2+bx+c where 

\displaystyle a=1,b=8, c=-2

the quadratic formula becomes as follows.

\displaystyle \frac{-8\pm {\sqrt{8^2-4(1)(-2)}}}{2(1)}

\displaystyle \frac{-8\pm {\sqrt{64+8}}}{2}

\displaystyle \frac{-8\pm {\sqrt{72}}}{2}

\displaystyle \frac{-8\pm {\sqrt{9}\times\sqrt{4}\times\sqrt{2}}}{2}

 

\displaystyle \frac{-8\pm {3\times2\times\sqrt{2}}}{2}

\displaystyle {-4\pm {3\sqrt{2}}}

Example Question #1621 : Algebra Ii

Use the quadratic formula to solve for x:

\displaystyle 4x+x^2+2

Possible Answers:

\displaystyle -4\pm\sqrt{8}

\displaystyle -4\pm2\sqrt{2}

\displaystyle -4\pm\sqrt{2}

\displaystyle -2\pm\sqrt{2}

\displaystyle {-2\pm2\sqrt{2}}

Correct answer:

\displaystyle -2\pm\sqrt{2}

Explanation:

To solve this problem, you must first rewrite the equation into  \displaystyle ax^2+bx+c form (quadratic form). 

After this you plug the numbers into the following quadratic equation:

\displaystyle x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

Which upon doing  you get:

\displaystyle x=\frac{-4\pm \sqrt{16-8}}{2} 

This simplifies to:

\displaystyle x=-2\pm\sqrt{2}

 

Example Question #1631 : Algebra Ii

Use the quadratic formula to find the roots of the quadratic, 

\displaystyle 2x^2 + 3x-7 = 0

 

 

Possible Answers:

\displaystyle x = \left\{-\frac{3}{4} + \frac{\sqrt{65}}{2}i, -\frac{3}{4} - \frac{\sqrt{65}}{2}i \right\}

\displaystyle x = \left\{\frac{3}{4} + \frac{\sqrt{65}}{2}, \frac{3}{4} - \frac{\sqrt{65}}{2} \right\}

\displaystyle x = \left\{-\frac{3}{4} + \frac{3\sqrt{6}}{4} -\frac{3}{4} - \frac{3\sqrt{6}}{4} \right\}

\displaystyle x = \left\{-\frac{3}{4} + \frac{\sqrt{65}}{4}, -\frac{3}{4} - \frac{\sqrt{65}}{4} \right\}

\displaystyle x = \left\{-\frac{3}{4} + \frac{3\sqrt{6}}{4}i, -\frac{3}{4} - \frac{3\sqrt{6}}{4}i \right\}

Correct answer:

\displaystyle x = \left\{-\frac{3}{4} + \frac{\sqrt{65}}{4}, -\frac{3}{4} - \frac{\sqrt{65}}{4} \right\}

Explanation:

\displaystyle 2x^2 +3x - 7 = 0

 

Recall the general form of a quadratic, 

\displaystyle ax^2 +bx+c = 0

The solution set has the form, 

\displaystyle x = \frac{-b \pm \sqrt{b^2 - 4ca}}{2a}

 

For our particular case, \displaystyle a = 2\displaystyle b = 3, and \displaystyle c = -7

 

\displaystyle x = \frac{-3 \pm \sqrt{3^2 - 4(2)(-7)}}{2(2)}

 

 

\displaystyle x = \frac{-3 \pm \sqrt{65}}{4}

 

 

\displaystyle x = \left\{-\frac{3}{4} + \frac{\sqrt{65}}{4}, -\frac{3}{4} - \frac{\sqrt{65}}{4} \right\}

 

 

Example Question #31 : Quadratic Formula

Use the quadratic formula to find the roots of the following equation.

\displaystyle 2x^2-12x+16=0

Possible Answers:

\displaystyle x=12, x=8

\displaystyle x=-6,x=-12

\displaystyle x=-12,x=16

\displaystyle x=4,x=2

\displaystyle x=2,x=-4

Correct answer:

\displaystyle x=4,x=2

Explanation:

\displaystyle 2x^2-12x+16=0

First, simplify the equation, so that the numbers are easier to work with. We can see that we can factor a 2 from each term.

\displaystyle 2(x^2-6x+8)=0

Now we can divide both sides by 2, to further simplify.

\displaystyle \frac{2}{2}(x^2-6x+8)=\frac{0}{2}

\displaystyle x^2-6x+8 = 0

Now that we have simplified we can apply the quadratic formula. 

\displaystyle \frac{-b\pm \sqrt{b^2-4ac}}{2a}

where a, b, and c are the constants defined as follows:

\displaystyle ax^2+bx+c = 0

This means our a is 1, our b is -6, and our c is 8.

Finally, lets plug the numbers into the formula:

\displaystyle \frac{-(-6)\pm \sqrt{(-6)^2-4(1)(8)}}{2(1)}

\displaystyle \frac{6\pm \sqrt{36-32}}{2}

\displaystyle \frac{-6\pm \sqrt{4}}{2}

\displaystyle \frac{-6\pm 2}{2}

\displaystyle \frac{-4}{2} and \displaystyle \frac{-8}{2}

or more simply:

\displaystyle 2, 4 

These are the roots of the equation.

Example Question #171 : Solving Quadratic Equations

Find the roots of the equation using the quadratic equation.

\displaystyle 4x^2-9x+3

Possible Answers:

\displaystyle x=\pm \frac{\sqrt{33}}{-8}

\displaystyle x=4,x=-9

\displaystyle x=9+\frac{\sqrt{33}}{8},x = 9-\frac{\sqrt{33}}{8}

\displaystyle x= \frac{4\pm \sqrt{65}}{2}

\displaystyle x =\frac{9\pm \sqrt{33}}{8}

Correct answer:

\displaystyle x =\frac{9\pm \sqrt{33}}{8}

Explanation:

\displaystyle 4x^2-9x+3

 

\displaystyle \frac{-b\pm \sqrt{b^2-4ac}}{2a}

where a, b, and c are the constants defined as follows:

\displaystyle ax^2+bx+c = 0

This means our a is 1, our b is -6, and our c is 8.

Finally, lets plug the numbers into the formula:

\displaystyle \frac{-(-9)\pm \sqrt{(-9)^2-4(4)(3)}}{2(4)}

\displaystyle \frac{9\pm \sqrt{81-48}}{8}

\displaystyle \frac{9\pm \sqrt{33}}{8}

These are the roots of the equation.

 

\displaystyle x =\frac{9\pm \sqrt{33}}{8}

Remember that using \displaystyle \pm is the exact same as writing:

\displaystyle x =\frac{9+ \sqrt{33}}{8}, x =\frac{9- \sqrt{33}}{8}

Example Question #491 : Intermediate Single Variable Algebra

Use the quadratic formula to find the answer of the following quadratic equation.

\displaystyle 3x^2-9x+2

Possible Answers:

\displaystyle x=3+\sqrt{57},x=3-\sqrt{57}

\displaystyle x=\frac{3+\sqrt{57}}{2},x=\frac{3-\sqrt{57}}{2}

\displaystyle x=\frac{9+\sqrt{57}}{6},x=\frac{9-\sqrt{57}}{6}

\displaystyle x=\frac{9+2\sqrt{57}}{6},x=\frac{9-2\sqrt{57}}{6}

\displaystyle x=\frac{9+\sqrt{59}}{6},x=\frac{9-\sqrt{59}}{6}

Correct answer:

\displaystyle x=\frac{9+\sqrt{57}}{6},x=\frac{9-\sqrt{57}}{6}

Explanation:

The quadratic equation is:

\displaystyle \frac{-b\pm \sqrt{b^2-4ac}}{2a}

\displaystyle \\a=3 \\b=-9 \\c=2

Therefore:

\displaystyle \frac{-(-9)\pm \sqrt{(-9)^2-4(3)(2)}}{2(3)}

Which gives the answer:

\displaystyle x=\frac{9\pm \sqrt{57}}{6}

 

Example Question #31 : Quadratic Formula

Solve for x:

\displaystyle 3x^2+12x+15=0

Possible Answers:

\displaystyle x=-2\pm i

\displaystyle x=-2+i

\displaystyle x=2\pm i

\displaystyle x=-12\pm 6i

Correct answer:

\displaystyle x=-2\pm i

Explanation:

For a quadratic function 

\displaystyle ax^2+bx+c

the quadratic formula states that

\displaystyle x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

Using the formula for our function, we get

\displaystyle x=\frac{-12\pm \sqrt{(12)^2-4(3)(15)}}{2(3)}=\frac{-12\pm \sqrt{-36}}{6}

Notice that we have a negative under the square root. This means that we must use the imaginary number 

\displaystyle i=\sqrt{-1}

and our roots will be imaginary.

Simplifying using i, we get

\displaystyle x=\frac{-12\pm 6i}{6}=-2\pm i

Example Question #179 : Solving Quadratic Equations

Find the roots using the quadratic formula

\displaystyle x^2+7x+7

Possible Answers:

\displaystyle -7 \pm \sqrt{21}

\displaystyle \frac{-7\pm \sqrt{21}}{2}

\displaystyle \frac{7\pm \sqrt{21}}{2}

\displaystyle \frac{-7}{2} \pm \sqrt{21}

\displaystyle 7 \pm \sqrt{21}

Correct answer:

\displaystyle \frac{-7\pm \sqrt{21}}{2}

Explanation:

\displaystyle \frac{-b\pm \sqrt{b^2-4ac}}{2a}

For this problem

a=1, the coefficient on the x^2 term

b=7, the coefficient on the x term

c=7, the constant term

\displaystyle \frac{-7\pm \sqrt{7^2-4(1)(7)}}{2(1)}\Rightarrow \frac{-7\pm \sqrt{21}}{2}

Example Question #180 : Solving Quadratic Equations

Find a root for:   \displaystyle y=15x^2+1

Possible Answers:

\displaystyle i\sqrt{15}

\displaystyle -\frac{i\sqrt{15}}{15}

\displaystyle 2i\sqrt{15}

\displaystyle -5i

Correct answer:

\displaystyle -\frac{i\sqrt{15}}{15}

Explanation:

Write the quadratic equation that applies for \displaystyle y=ax^2+bx+c.

\displaystyle x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

There is no \displaystyle b term.   Substitute the known coefficients from the polynomial.

\displaystyle x=\frac{\pm \sqrt{-4(15)(1)}}{2(15)}

Simplify the numerator and denominator.

\displaystyle x=\frac{ \pm\sqrt{-60}}{30} = \pm\frac{\sqrt{-1} \cdot 2 \sqrt{15}}{30} = \pm \frac{i\sqrt{15}}{15}

The roots will be imaginary.

One of the possible answers is:  \displaystyle -\frac{i\sqrt{15}}{15}

Learning Tools by Varsity Tutors