Algebra II : Multiplying and Dividing Exponents

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #81 : Simplifying Exponents

Simplify: \displaystyle 4^7*4^{12}

Possible Answers:

\displaystyle 4^{84}

\displaystyle 4^{28}

\displaystyle 4^{36}

\displaystyle 4^{19}

\displaystyle 4^{24}

Correct answer:

\displaystyle 4^{19}

Explanation:

When multiplying exponents with the same base, we just add the exponents and keep the base the same.

\displaystyle 4^{7}*4^{12}=4^{7+12}=4^{19}

Example Question #82 : Simplifying Exponents

Simplify: \displaystyle 5^{17}*5^{23}

Possible Answers:

\displaystyle 5^{40}

\displaystyle 5^{50}

\displaystyle 5^{42}

\displaystyle 5^{235}

\displaystyle 5^{391}

Correct answer:

\displaystyle 5^{40}

Explanation:

When multiplying exponents with the same base, we just add the exponents and keep the base the same.

\displaystyle 5^{17}*5^{23}=5^{17+23}=5^{40}

Example Question #83 : Simplifying Exponents

Simplify: \displaystyle \frac{6^{48}}{6^{12}}

Possible Answers:

\displaystyle 6^{22}

\displaystyle 6{^{36}}

\displaystyle 6^{4}

\displaystyle 6^{30}

\displaystyle 6^{24}

Correct answer:

\displaystyle 6{^{36}}

Explanation:

When dividing exponents with the same base, we just subtract the exponents and keep the base the same.

\displaystyle \frac{6^{48}}{6^{12}}=6^{48-12}=6^{36}

Example Question #84 : Simplifying Exponents

Simplify: \displaystyle \frac{8^{60}}{8^{-12}}

Possible Answers:

\displaystyle 8^{-720}

\displaystyle 8^{80}

\displaystyle 8^{72}

\displaystyle 8^{64}

\displaystyle 8^{48}

Correct answer:

\displaystyle 8^{72}

Explanation:

When dividing exponents with the same base, we just subtract the exponents and keep the base the same.

\displaystyle \frac{8^{60}}{8^{-12}}=8^{60-(-12)}=8^{72}

Example Question #85 : Multiplying And Dividing Exponents

Simplify the following:

\displaystyle (2a^2b^8c)(8bc^7)

 

Possible Answers:

\displaystyle 16a^2b^9c^8

\displaystyle 16a^2b^9c^7

\displaystyle 16b^9c^8

\displaystyle 16a^2b^8c^7

\displaystyle 16b^8c^7

Correct answer:

\displaystyle 16a^2b^9c^8

Explanation:

Remembering the exponent rule of multiplication:

\displaystyle x^m*x^n=x^{m+n}

Therefore:

\displaystyle (2a^2b^8c)(8bc^7)

Becomes:

\displaystyle 2*8a^2b^{8+1}c^{1+7}

Which gives the final answer:

\displaystyle 16a^2b^9c^8

Example Question #86 : Simplifying Exponents

Simplify:

\displaystyle \frac{12a^6b^2c^3}{4ab^7c^6}

Possible Answers:

\displaystyle \frac{3a^6b}{c^3}

\displaystyle 3a^5b^5c^3

\displaystyle \frac{a^5}{3b^5c^3}

\displaystyle \frac{4a^5}{b^5c^3}

\displaystyle \frac{3a^5}{b^5c^3}

Correct answer:

\displaystyle \frac{3a^5}{b^5c^3}

Explanation:

Using the exponent rules:

\displaystyle \frac{x^m}{x^n}=x^{m-n}

and:

\displaystyle x^{-m}=\frac{1}{x^m}

Gives:

\displaystyle (12/4)a^{6-1}b^{2-7}c^{3-6}=3a^5b^{-5}c^{-3}=\frac{3a^5}{b^5c^3}

Example Question #85 : Simplifying Exponents

Simplify: \displaystyle 15^8*15^{12}

Possible Answers:

\displaystyle 15^{20}

\displaystyle 225^{96}

\displaystyle 15^{24}

\displaystyle 225^{20}

\displaystyle 15^{96}

Correct answer:

\displaystyle 15^{20}

Explanation:

When multiplying exponents with the same base, we just add the exponents and keep the base the same.

\displaystyle 15^8*15^{12}=15^{8+12}=15^{20}

Example Question #3551 : Algebra Ii

Simplify: \displaystyle 12^{-12}*12^{-9}

Possible Answers:

\displaystyle 12^{108}

\displaystyle 12^{-14}

\displaystyle 12^{-3}

\displaystyle 12^{-21}

\displaystyle 12^7

Correct answer:

\displaystyle 12^{-21}

Explanation:

When multiplying exponents with the same base, we just add the exponents and keep the base the same.

\displaystyle 12^{-12}*12^{-9}=12^{-12+(-9)}=12^{-21}

Example Question #3552 : Algebra Ii

Simplify: \displaystyle 3^{-10}*3^{19}

Possible Answers:

\displaystyle 3^{-29}

\displaystyle 3^{-19}

\displaystyle 3^7

\displaystyle 3^{-90}

\displaystyle 3^9

Correct answer:

\displaystyle 3^9

Explanation:

When multiplying exponents with the same base, we just add the exponents and keep the base the same.

\displaystyle 3^{-10}*3^{19}=3^{-10+19}=3^9

Example Question #3553 : Algebra Ii

Simplify: \displaystyle 6^{88}\div6^{44}

Possible Answers:

\displaystyle 6^{48}

\displaystyle 6^2

\displaystyle 6^{44}

\displaystyle 6^{22}

\displaystyle 6^{11}

Correct answer:

\displaystyle 6^{44}

Explanation:

When dividing exponents with the same base, we subtract the exponents while keeping the base the same.

\displaystyle 6^{88}\div6^{44}=6^{88-44}=6^{44}

Learning Tools by Varsity Tutors