Algebra II : Multiplying and Dividing Exponents

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #171 : Multiplying And Dividing Exponents

Simplify  \(\displaystyle x^2y^3x^{-3}y^7\)

Possible Answers:

\(\displaystyle x^2y^7\)

Not possible. 

\(\displaystyle x^7y^{2}\)

\(\displaystyle \frac{y^{10}}{x}\)

\(\displaystyle \frac{x^2y^{10}}{x^3}\)

Correct answer:

\(\displaystyle \frac{y^{10}}{x}\)

Explanation:

First combine like variables. This leaves us with \(\displaystyle x^{-1}y^{10}\) which is equal to \(\displaystyle \frac{y^{10}}{x}\)

Example Question #172 : Multiplying And Dividing Exponents

Simplify \(\displaystyle x^2y^4z^5x^5z^7y^8\)

Possible Answers:

\(\displaystyle (xyz)^{31}\)

\(\displaystyle 1/x^7y^{12}z^{12}\)

\(\displaystyle x^7y^{12}z^{12}\)

Not possible. 

Correct answer:

\(\displaystyle x^7y^{12}z^{12}\)

Explanation:

First combine like variables by adding exponents. This leaves us with \(\displaystyle x^7y^{12}z^{12}\)

Example Question #173 : Multiplying And Dividing Exponents

Simplify \(\displaystyle \frac{x^7y^2z^8x^2y^{16}}{x^9y^{18}}\)

Possible Answers:

\(\displaystyle z^8\)

\(\displaystyle xyz^8\)

Not possible

\(\displaystyle x^{18}y^{36}z^8\)

Correct answer:

\(\displaystyle z^8\)

Explanation:

First, combine exponents of like variables.  This gives us \(\displaystyle \frac{x^9y^{18}z^8}{x^9y^{18}}\) which simplifies to \(\displaystyle z^8\)

Example Question #174 : Multiplying And Dividing Exponents

Simplify \(\displaystyle x^5y^2x^{-4}\)

Possible Answers:

\(\displaystyle \frac{x}{y^2}\)

\(\displaystyle 0\)

\(\displaystyle x^2y\)

\(\displaystyle (xy)^2\)

\(\displaystyle xy^2\)

Correct answer:

\(\displaystyle xy^2\)

Explanation:

First, combine exponents of like variables.  This gives us \(\displaystyle xy^2\)

Example Question #175 : Multiplying And Dividing Exponents

Simplify \(\displaystyle z^3y^2x^6y^{-3}\)

Possible Answers:

\(\displaystyle z^3y^2x^6\)

\(\displaystyle (xyz)^8\)

\(\displaystyle \frac{z^3x^6}{y}\)

\(\displaystyle \frac{z^3x^6}{y^3}\)

Correct answer:

\(\displaystyle \frac{z^3x^6}{y}\)

Explanation:

First, combine exponents of like variables.  This gives us \(\displaystyle z^3y^{-1}x^6\) which simplifies to \(\displaystyle \frac{z^3x^6}{y}\)

Example Question #176 : Multiplying And Dividing Exponents

Simplify \(\displaystyle x^8z^2y^3x^4y^{18}z^2z^{-14}y^{-23}y^{12}x^{-3}z^{22}x^{-9}\)

Possible Answers:

\(\displaystyle y^3\)

\(\displaystyle 1\)

\(\displaystyle y^{10}z^{12}\)

\(\displaystyle x^2\)

\(\displaystyle x^{24}y^{45}z^{25}\)

Correct answer:

\(\displaystyle y^{10}z^{12}\)

Explanation:

First, combine exponents of like variables and add them together.  This gives us \(\displaystyle x^0y^{10}z^{12}\) which simplifies to \(\displaystyle y^{10}z^{12}\)

Example Question #177 : Multiplying And Dividing Exponents

The expression \(\displaystyle \frac{a^{3}b^{-2}}{a^{-4}b^{2}}\) is equivalent to?

Possible Answers:

\(\displaystyle \frac{a^{7}}{b^{4}}\)

\(\displaystyle \frac{a^{3}}{b^{2}}\)

\(\displaystyle \frac{b^{5}}{a^{7}}\)

\(\displaystyle 1\)

\(\displaystyle a^{-2}b^{-2}\)

Correct answer:

\(\displaystyle \frac{a^{7}}{b^{4}}\)

Explanation:

By simplifying the exponents: bringing the \(\displaystyle a^{-4}\) to the numerator and adding the two a's together, getting \(\displaystyle a^{7}\) in the numerator, and bringing the \(\displaystyle b^{-2}\) to the denominator and adding the two b's together, getting \(\displaystyle b^{4}\) in the denominator. 

Example Question #178 : Multiplying And Dividing Exponents

Divide the exponents:  \(\displaystyle \frac{2^{8}}{2^{10}}\)

Possible Answers:

\(\displaystyle \frac{1}{4}\)

\(\displaystyle \frac{1}{2}\)

\(\displaystyle \frac{1}{256}\)

\(\displaystyle -\frac{1}{4}\)

\(\displaystyle \frac{1}{512}\)

Correct answer:

\(\displaystyle \frac{1}{4}\)

Explanation:

Since both of the terms are divided and share a common base, we can simplify the exponents by subtraction.

\(\displaystyle \frac{2^{8}}{2^{10}} = 2^{8-10} = 2^{-2}\)

The negative exponent can be rewritten as fraction.

\(\displaystyle 2^{-2} = \frac{1}{2^2} = \frac{1}{4}\)

The answer is:  \(\displaystyle \frac{1}{4}\)

Example Question #179 : Multiplying And Dividing Exponents

Simplify:  \(\displaystyle \frac{x^{-5}}{x^{-6}} \div x^{-5}\)

Possible Answers:

\(\displaystyle \frac{1}{x^6}\)

\(\displaystyle \frac{1}{x^4}\)

\(\displaystyle \frac{1}{x^2}\)

\(\displaystyle \frac{1}{x^{16}}\)

\(\displaystyle x^6\)

Correct answer:

\(\displaystyle x^6\)

Explanation:

Evaluate the first term by subtracting the exponents.

\(\displaystyle \frac{x^{-5}}{x^{-6}} = x^{-5-(-6)} = x^{-5+6} = x^1=x\)

\(\displaystyle x\div x^{-5} = \frac{x^1}{x^{-5}} = x^{1-(-5)} = x^6\)

The answer is:  \(\displaystyle x^6\)

Example Question #180 : Multiplying And Dividing Exponents

Solve:  \(\displaystyle \frac{2^8}{4^{5}}\)

Possible Answers:

\(\displaystyle \frac{1}{32}\)

\(\displaystyle \frac{1}{8}\)

\(\displaystyle \frac{1}{4}\)

\(\displaystyle \frac{1}{16}\)

\(\displaystyle \frac{1}{4096}\)

Correct answer:

\(\displaystyle \frac{1}{4}\)

Explanation:

Do not expand the powers.  Instead convert the denominator to base two.

\(\displaystyle \frac{2^8}{4^{5}} = \frac{2^8}{(2^2)^{5}} = \frac{2^8}{2^{10}}\)

Now that common bases with a certain exponent are divided, we can subtract the exponents.

\(\displaystyle 2^{8-10} = 2^{-2}\)

Rewrite this term as a fraction.

\(\displaystyle 2^{-2} = \frac{1}{2^2} = \frac{1}{4}\)

The answer is:  \(\displaystyle \frac{1}{4}\)

Learning Tools by Varsity Tutors