Algebra II : Logarithms

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #14 : Logarithms With Exponents

Solve:  

Possible Answers:

Correct answer:

Explanation:

Rewrite the log so that the terms are in a fraction.

Both terms can now be rewritten in base two.

The exponents can be moved to the front as coefficients.

The answer is:  

Example Question #73 : Simplifying Logarithms

Which statement is true of  for all positive values of ?

Possible Answers:

Correct answer:

Explanation:

By the Logarithm of a Power Property, for all real , all 

Setting , the above becomes 

Since, for any  for which the expressions are defined, 

,

setting , th equation becomes

.

Example Question #15 : Logarithms With Exponents

Which statement is true of 

for all integers ?

Possible Answers:

Correct answer:

Explanation:

Due to the following relationship:

; therefore, the expression 

can be rewritten as 

By definition,  

.

Set  and , and the equation above can be rewritten as

,

or, substituting back,

Example Question #1 : Solving Logarithmic Functions

Solve for :

Possible Answers:

Correct answer:

Explanation:

To solve for , first convert both sides to the same base:

Now, with the same base, the exponents can be set equal to each other:

Solving for  gives:

Example Question #2 : Solving Logarithms

Solve the equation: 

Possible Answers:

Correct answer:

Explanation:

Example Question #3 : Solving Logarithms

Use    to approximate the value of  .

Possible Answers:

Correct answer:

Explanation:

Rewrite  as a product that includes the number :

Then we can split up the logarithm using the Product Property of Logarithms:

                     

                     

Thus,

.

 

Example Question #3 : Solving Logarithms

Solve for .

Possible Answers:

Correct answer:

Explanation:

Rewrite in exponential form:

Solve for x:

Example Question #4 : Solving Logarithms

Solve the following equation:

Possible Answers:

Correct answer:

Explanation:

For this problem it is helpful to remember that,

  is equivalent to  because 

Therefore we can set what is inside of the parentheses equal to each other and solve for  as follows:

Example Question #5 : Solving Logarithms

Solve for :

Possible Answers:

Correct answer:

Explanation:

To solve this logarithm, we need to know how to read a logarithm. A logarithm is the inverse of an exponential function. If a exponential equation is

then its inverse function, or logarithm, is

Therefore, for this problem, in order to solve for , we simply need to solve

which is .

Example Question #7 : Solving Logarithms

Solve for .

Possible Answers:

Correct answer:

Explanation:

Logs are exponential functions using base 10 and a property is that you can combine added logs by multiplying.

You cannot take the log of a negative number.  x=-25  is extraneous.

Learning Tools by Varsity Tutors