Algebra II : Imaginary Numbers

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1982 : Mathematical Relationships And Basic Graphs

Solve:  \displaystyle \frac{6i}{2i-1}

Possible Answers:

\displaystyle -\frac{2}{5}i+\frac{2}{5}

\displaystyle \frac{3}{2}i + 3

\displaystyle -\frac{6}{5}i+\frac{12}{5}

\displaystyle \frac{6}{5}i+\frac{12}{5}

\displaystyle \textup{The expression is fully simplified.}

Correct answer:

\displaystyle -\frac{6}{5}i+\frac{12}{5}

Explanation:

In order to simplify this expression, we will need to multiply the numerator and denominator with the conjugate of the denominator.

\displaystyle \frac{6i}{2i-1}\cdot \frac{2i+1}{2i+1}

Simplify the top and bottom.  The value of \displaystyle i=\sqrt{-1}.

\displaystyle 6i(2i+1) = 12i^2+6i = 12(-1)+6i = 6i-12

\displaystyle (2i-1)(2i+1) = 4i^2-1 = 4(-1)-1=-5

Divide the numerator with the denominator.

\displaystyle \frac{6i-12}{-5} = -\frac{6}{5}i+\frac{12}{5}

The answer is:  \displaystyle -\frac{6}{5}i+\frac{12}{5}

Example Question #32 : Imaginary Numbers

Simplify:  \displaystyle \frac{i^3}{2i-4}

Possible Answers:

\displaystyle 2i-4

\displaystyle \frac{1}{5}i-\frac{1}{10}

\displaystyle \textup{The question is simplified as is.}

\displaystyle \frac{1}{2}i-\frac{1}{8}

\displaystyle i-\frac{1}{4}

Correct answer:

\displaystyle \frac{1}{5}i-\frac{1}{10}

Explanation:

Multiply the numerator and denominator by the conjugate of the denominator.

\displaystyle \frac{i^3}{2i-4}\cdot \frac{2i+4}{2i+4} = \frac{2i^4+4i^3}{4i^2-16}

Simplify the top and the bottom.

Recall that \displaystyle i=\sqrt{-1}, and \displaystyle i^2= i\cdot i = -1.

This means that:

\displaystyle i^3 = i^2\cdot i = -i

\displaystyle i^4 = i^2\cdot i^2 = (-1)\cdot (-1) = 1

Re-substitute the actual values back into the fraction.

\displaystyle \frac{2(1)+4(-i)}{4(-1)-16} = \frac{2-4i}{-20}

Reduce and split this fraction.

The correct answer is:  \displaystyle \frac{1}{5}i-\frac{1}{10}

Example Question #31 : Imaginary Numbers

Simplify:   \displaystyle \frac{i^2+2i+1}{i-2}

Possible Answers:

\displaystyle -\frac{2}{5}i+\frac{2}{5}

\displaystyle \frac{1}{5}i-\frac{5}{6}

\displaystyle -\frac{4}{5}i+\frac{2}{5}

\displaystyle \frac{4}{3}i-2

\displaystyle -\frac{4}{5}i+\frac{1}{5}

Correct answer:

\displaystyle -\frac{4}{5}i+\frac{2}{5}

Explanation:

The values are imaginary.  Recall that:

\displaystyle i=\sqrt{-1}

This means that:  \displaystyle i^2= i\cdot i = -1

Rewrite the numerator.

\displaystyle \frac{i^2+2i+1}{i-2} = \frac{-1+2i+1}{i-2}=\frac{2i}{i-2}

Multiply the top and bottom by the conjugate of \displaystyle i-2.

\displaystyle \frac{2i}{i-2}\cdot \frac{i+2}{i+2} = \frac{2i^2+4i}{i^2-4}

Rewrite the terms using the value of \displaystyle i^2.

\displaystyle \frac{2i^2+4i}{i^2-4}=\frac{2(-1)+4i}{-1-4} =\frac{ -2+4i}{-5}

The answer is:  \displaystyle -\frac{4}{5}i+\frac{2}{5}

Example Question #34 : Imaginary Numbers

Simplify:  \displaystyle \frac{i-6}{2i-1}

Possible Answers:

\displaystyle \frac{11}{5}i+\frac{8}{5} 

\displaystyle 11i-14

\displaystyle \frac{1}{5}i-\frac{2}{5}

\displaystyle -11i+14

\displaystyle -\frac{13}{5}i-\frac{4}{5}

Correct answer:

\displaystyle \frac{11}{5}i+\frac{8}{5} 

Explanation:

In order to simplify this, we will need to multiply the top and bottom of the fraction by the conjugate of the denominator.

\displaystyle \frac{i-6}{2i-1} \times \frac{2i+1}{2i+1}

Multiply the numerator.

\displaystyle (i-6)(2i+1) = (i)(2i)+(i)(1)+(-6)(2i)+(-6)(1)

\displaystyle 2i^2+i-12i-6 = 2i^2-11i-6

The term \displaystyle i^2=-1 since \displaystyle i=\sqrt{-1}.  Replace the term and simplify.

\displaystyle = 2(-1)-11i-6 = -11i-8

Multiply the denominator.

\displaystyle (2i-1)(2i+1) =4i^2-1 = 4(-1)-1 =-5

The expression becomes:

\displaystyle \frac{i-6}{2i-1} \times \frac{2i+1}{2i+1} = \frac{ -11i-8}{-5}

Dividing the double negatives will result into a positive value.

The answer is:  \displaystyle \frac{11}{5}i+\frac{8}{5}

Example Question #1991 : Mathematical Relationships And Basic Graphs

Simplify:  \displaystyle \frac{i}{i^2+2i-1}

Possible Answers:

\displaystyle -\frac{1}{4}i+\frac{1}{4}

\displaystyle -\frac{1}{2}i+\frac{1}{2}

\displaystyle -\frac{3}{8}i+\frac{1}{2}

\displaystyle -\frac{1}{8}i+\frac{1}{8}

\displaystyle -\frac{3}{4}i+\frac{3}{8}

Correct answer:

\displaystyle -\frac{1}{4}i+\frac{1}{4}

Explanation:

Simplify the denominator.  Recall that \displaystyle i=\sqrt{-1}, and \displaystyle i^2= i\cdot i = -1.

\displaystyle \frac{i}{i^2+2i-1} =\frac{i}{(-1)+2i-1} =\frac{i}{2i-2}

Multiply the top and bottom by the conjugate of the denominator.  Use the FOIL method to simplify the denominator.

\displaystyle \frac{i}{2i-2}\cdot \frac{2i+2}{2i+2} = \frac{2i^2+2i}{4i^2-4}

Replace the values of the known imaginary terms.

\displaystyle \frac{2i^2+2i}{4i^2-4} =\frac{2(-1)+2i}{4(-1)-4}=\frac{2i-2}{-8}

Simplify this fraction.

The answer is:  \displaystyle -\frac{1}{4}i+\frac{1}{4}

Example Question #1991 : Mathematical Relationships And Basic Graphs

Simplify:  \displaystyle \frac{10}{10+i}

Possible Answers:

\displaystyle -\frac{10}{101}i-\frac{100}{101}

\displaystyle \frac{1}{10}i-\frac{10}{11}

\displaystyle -\frac{10}{101}i-\frac{101}{100}

\displaystyle -\frac{10}{101}i+\frac{100}{101}

\displaystyle \frac{1}{10}i-\frac{11}{10}

Correct answer:

\displaystyle -\frac{10}{101}i+\frac{100}{101}

Explanation:

In order to simplify this, we will need to multiply both the top and bottom by the conjugate of the denominator.

\displaystyle \frac{10}{10+i} = \frac{10}{i+10}

\displaystyle \frac{10}{i+10} \times \frac{i-10}{i-10}

Simplify the top and bottom.  The bottom can be simplified by the FOIL method.

\displaystyle \frac{10}{i+10} \times \frac{i-10}{i-10} = \frac{10i-100}{i^2-100}

The value of \displaystyle i^2= i\cdot i = -1 .  Replace the term.

\displaystyle \frac{10i-100}{-1-100} = \frac{10i-100}{-101}

Reduce this fraction.

The answer is:  \displaystyle -\frac{10}{101}i+\frac{100}{101}

Example Question #31 : Imaginary Numbers

Simplify:  \displaystyle \frac{3i}{i+9}

Possible Answers:

\displaystyle \frac{27}{35}i+\frac{3}{35}

\displaystyle \frac{27}{82}i+\frac{3}{82}

\displaystyle \frac{27}{82}i-\frac{3}{82}

\displaystyle \frac{27}{13}i+\frac{3}{13}

\displaystyle -3i+\frac{1}{9}

Correct answer:

\displaystyle \frac{27}{82}i+\frac{3}{82}

Explanation:

In order to simplify this expression, we will need to multiply the numerator and denominator by the conjugate of the denominator.

\displaystyle \frac{3i}{i+9}\cdot \frac{i-9}{i-9}

Simplify both the top and bottom.  Recall that:  \displaystyle i=\sqrt{-1}

\displaystyle 3i(i-9) = 3i^2-27i = 3(-1)-27i = -27i-3

\displaystyle (i+9)(i-9) = i^2-81 = (-1)-81 =-82

Divide the numerator with the denominator.

\displaystyle \frac{ -27i-3}{-82}

Simplify this term and split the fraction.

The answer is:  \displaystyle \frac{27}{82}i+\frac{3}{82}

Example Question #1992 : Mathematical Relationships And Basic Graphs

Solve:  \displaystyle \frac{6i+6}{i-3}

Possible Answers:

\displaystyle -\frac{12}{5}i-\frac{6}{5}

\displaystyle -\frac{12}{5}i+\frac{3}{5}

\displaystyle -\frac{12}{5}i+\frac{6}{5}

\displaystyle -\frac{6}{5}i+\frac{6}{5}

\displaystyle -\frac{3}{5}i+\frac{3}{5}

Correct answer:

\displaystyle -\frac{12}{5}i-\frac{6}{5}

Explanation:

Multiply the top and bottom of the expression by the conjugate of the denominator.

\displaystyle \frac{6i+6}{i-3}\times\frac{i+3}{i+3}

Simplify the top and bottom using the FOIL method.

\displaystyle (6i+6)(i+3) = 6i^2+18i+6i+18 = 6i^2+24i+18

Note that:  \displaystyle i^2= i\cdot i = -1

Replace the term.  The numerator becomes:

\displaystyle 6i^2+24i+18 =6(-1)+24i+18 = 24i+12

Simplify the denominator.

\displaystyle (i-3)(i+3)= i^2-9 = (-1)-9 = -10

Divide the numerator with the denominator.

\displaystyle \frac{ 24i+12}{-10} = -\frac{12}{5}i-\frac{6}{5}

The answer is:  \displaystyle -\frac{12}{5}i-\frac{6}{5}

Example Question #31 : Complex Imaginary Numbers

Simplify:  \displaystyle \frac{3i}{3i-1}

Possible Answers:

\displaystyle -\frac{1}{3}i+\frac{9}{10}

\displaystyle -\frac{9}{10}i+\frac{3}{10}

\displaystyle -\frac{3}{10}i+\frac{9}{10}

\displaystyle -\frac{3}{10}i+\frac{1}{9}

\displaystyle -\frac{3}{4}i+\frac{3}{5}

Correct answer:

\displaystyle -\frac{3}{10}i+\frac{9}{10}

Explanation:

Multiply the top and bottom of this fraction by the conjugate of the denominator.

\displaystyle \frac{3i}{3i-1}\cdot \frac{3i+1}{3i+1}

Simplify the numerator.  Recall that \displaystyle i=\sqrt{-1}, and \displaystyle i^2= i\cdot i = -1.

\displaystyle 3i(3i+1) = 9i^2+3i = 9(-1)+3i= 3i-9

Simplify the denominator by FOIL method.

\displaystyle (3i-1)(3i+1) = 9i^2-1 = 9(-1)-1=-10

Divide the numerator with the denominator.

\displaystyle \frac{3i-9}{-10}

The answer is:  \displaystyle -\frac{3}{10}i+\frac{9}{10}

Example Question #31 : Complex Imaginary Numbers

Simplify, if possible:   \displaystyle \frac{5}{i-7}

Possible Answers:

\displaystyle -\frac{1}{10}i-\frac{7}{10}

\displaystyle \textup{The expression is already simplified.}

\displaystyle -\frac{1}{35}i-\frac{5}{7}

\displaystyle 10i-7

\displaystyle -\frac{1}{35}i-\frac{1}{7}

Correct answer:

\displaystyle -\frac{1}{10}i-\frac{7}{10}

Explanation:

Multiply the top and the bottom of the fraction by the conjugate of the denominator.

\displaystyle \frac{5}{i-7} \cdot \frac{i+7}{i+7}

Expand the top and bottom.

\displaystyle 5(i+7) = 5i+35

\displaystyle (i-7)(i+7) = i^2-49

Recall that:

\displaystyle i=\sqrt{-1}

 \displaystyle i^2= i\cdot i = -1

Replace the imaginary term for \displaystyle i^2.

\displaystyle \frac{5}{i-7} \cdot \frac{i+7}{i+7} = \frac{5i+35}{i^2-49} = \frac{5i+35}{(-1)-49}=\frac{5i+35}{-50}

Simplify this fraction.

The answer is:  \displaystyle -\frac{1}{10}i-\frac{7}{10}

Learning Tools by Varsity Tutors