Algebra II : Exponents

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #32 : Simple Exponents

Convert \displaystyle 16 to base \displaystyle 2.

Possible Answers:

\displaystyle 2^2

\displaystyle 2^4

\displaystyle 2^8

\displaystyle 2^6

\displaystyle 2^3

Correct answer:

\displaystyle 2^4

Explanation:

First, we know that \displaystyle 16 is divisible by \displaystyle 2.

Therefore:

\displaystyle 16=2^4

The answer is:

\displaystyle 2^4

Example Question #33 : Simple Exponents

Convert \displaystyle 2^{15} to base \displaystyle 8.

 

Possible Answers:

\displaystyle 8^9

\displaystyle 8^6

\displaystyle 8^4

\displaystyle 8^{12}

\displaystyle 8^5

Correct answer:

\displaystyle 8^5

Explanation:

First, we know \displaystyle 8 is divisible by \displaystyle 2.

Therefore:

 \displaystyle 8=2^3

We can set-up an equation by applying the power rule of exponents.

\displaystyle 2^{15}=(2^3)^x 

When a number to a power is raised by an exponent, we add the exponents. Write an equation and solve for \displaystyle x.

\displaystyle 3x=15

Simplify.

\displaystyle x=5

The answer is:

\displaystyle 8^5

Example Question #34 : Simple Exponents

Convert \displaystyle 3^{72} to base \displaystyle 9.

Possible Answers:

\displaystyle 9^{24}

\displaystyle 9^{70}

\displaystyle 9^{36}

\displaystyle 9^{48}

\displaystyle 9^{12}

Correct answer:

\displaystyle 9^{36}

Explanation:

First, know \displaystyle 9 is divisible by \displaystyle 3.

Therefore:

 \displaystyle 9=3^2

We can set-up an equation by applying the power rule of exponents.

\displaystyle 3^{72}=(3^2)^x 

When a number to a power is raised by an exponent, we add the exponents. Write an equation and solve for \displaystyle x.

\displaystyle 2x=72

Simplify.

\displaystyle x=36

The answer is:

\displaystyle 9^{36}

Example Question #231 : Exponents

Convert \displaystyle 27^4 to base \displaystyle 3

Possible Answers:

\displaystyle 3^{12}

\displaystyle 3^{9}

\displaystyle 3^{18}

\displaystyle 3^{7}

\displaystyle 3^{15}

Correct answer:

\displaystyle 3^{12}

Explanation:

First, we know the following:

 \displaystyle 27=3^3

In order to figure out the whole exponent, we can apply the power rule for exponents.

\displaystyle 27^4=(3^3)^4=3^{12}

Example Question #232 : Exponents

Evaluate:

\displaystyle \frac{1}{5}^2

Possible Answers:

\displaystyle \frac{1}{25}

\displaystyle \frac{2}{25}

\displaystyle \frac{1}{10}

\displaystyle 25

\displaystyle \frac{2}{5}

Correct answer:

\displaystyle \frac{1}{25}

Explanation:

We can expand \displaystyle \frac{1}{5}^2 to the following:

 \displaystyle \frac{1}{5}*\frac{1}{5} 

The product is: 

\displaystyle \frac{1}{25}

Example Question #37 : Simple Exponents

Evaluate: 

\displaystyle \frac{3}{4}^3

Possible Answers:

\displaystyle \frac{9}{16}

\displaystyle \frac{27}{12}

\displaystyle \frac{9}{64}

\displaystyle \frac{27}{34}

\displaystyle \frac{27}{64}

Correct answer:

\displaystyle \frac{27}{64}

Explanation:

We can expand \displaystyle \frac{3}{4}^3 to the following:

\displaystyle \frac{3}{4}*\frac{3}{4}*\frac{3}{4}

The product is: 

\displaystyle \frac{27}{64}

Example Question #38 : Simple Exponents

Convert \displaystyle \frac{1}{32} to base \displaystyle \frac{1}{2}

Possible Answers:

\displaystyle \frac{1}{2}^7

\displaystyle \frac{1}{2}^{18}

\displaystyle \frac{1}{2}^{16}

\displaystyle \frac{1}{2}^5

\displaystyle \frac{1}{2}^4

Correct answer:

\displaystyle \frac{1}{2}^5

Explanation:

First, we know that \displaystyle \frac{1}{32} is divisible by \displaystyle \frac{1}{2}.

The conversion becomes: 

\displaystyle \frac{1}{2}^5 

Example Question #39 : Simple Exponents

Convert \displaystyle \frac{1}{125} to base \displaystyle \frac{1}{5}.

Possible Answers:

\displaystyle \frac{1}{5}^3

\displaystyle \frac{1}{5}^{25}

\displaystyle \frac{1}{5}^{10}

\displaystyle \frac{1}{5}^4

\displaystyle \frac{1}{5}^2

Correct answer:

\displaystyle \frac{1}{5}^3

Explanation:

First, we know that \displaystyle \frac{1}{125} is divisible by \displaystyle \frac{1}{5}.

The conversion becomes: 

 \displaystyle \frac{1}{5}^3

Example Question #3371 : Algebra Ii

Convert \displaystyle \frac{1}{8} to base \displaystyle 2

Possible Answers:

\displaystyle -2^{3}

\displaystyle 2^2

\displaystyle 2^{\frac{1}{8}}

\displaystyle 2^{\frac{1}{3}}

\displaystyle 2^{-3}

Correct answer:

\displaystyle 2^{-3}

Explanation:

We know that exponents raised to the negative power will generate fractions. 

We also know that \displaystyle 8 is divisible by \displaystyle 2.

\displaystyle 8=2^3 

However, since this a fraction, we then have the following:

\displaystyle \frac{1}{8}=2^{-3}

Example Question #3372 : Algebra Ii

Convert \displaystyle 256 to base \displaystyle \frac{1}{16}

Possible Answers:

\displaystyle -\frac{1}{16}^{-2}

\displaystyle \frac{1}{16}^2

\displaystyle \frac{1}{16}^{16}

\displaystyle \frac{1}{16}^{-2}

\displaystyle \frac{1}{16}^{\frac{1}{16}}

Correct answer:

\displaystyle \frac{1}{16}^{-2}

Explanation:

If fractions are raised to a positive integer exponents, we know we will generate fractions; however, if a fraction is raised by a negative integer exponent, our answer will be whole number instead.

For example: 

\displaystyle \frac{1}{2}^{-2}=\frac{1}{\frac{1}{2^2}}=\frac{1}{\frac{1}{4}}=4

The following rule has been used in this scenario:

\displaystyle x^{-a}=\frac{1}{x^a} 

In this formula, \displaystyle a is a positive exponent raising the base \displaystyle x.

We know \displaystyle 256=16^2.

Since we are dealing with a integer and converting to fractional base, we know we need to have a negative exponent.

The answer is:

\displaystyle \frac{1}{16}^{-2}

Learning Tools by Varsity Tutors