Algebra II : Intermediate Single-Variable Algebra

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #42 : Foil

Solve:  \displaystyle (-2x+5)(3x-9)

Possible Answers:

\displaystyle -6x^2-33x+45

\displaystyle -6x^2+33x-45

\displaystyle 6x^2-20x-45

\displaystyle -6x^2-2x-45

\displaystyle -6x^2+3x-45

Correct answer:

\displaystyle -6x^2+33x-45

Explanation:

Solve this expression by using the FOIL method.

\displaystyle (-2x)(3x)+(-2x)(-9)+(5)(3x)+(5)(-9)

Simplify each term by order of operations.

\displaystyle -6x^2+18x+15x-45

Combine like-terms.

The answer is:  \displaystyle -6x^2+33x-45

Example Question #45 : Foil

Solve:  \displaystyle (\frac{1}{\sqrt2}-\sqrt2)(\frac{2}{\sqrt2}-\sqrt2)

Possible Answers:

\displaystyle 1

\displaystyle -3

\displaystyle -5

\displaystyle 0

\displaystyle -1

Correct answer:

\displaystyle 0

Explanation:

Use the FOIL method to expand the terms. Follow the template for using this method.

\displaystyle (w+x)(y+z) = wy+wz+xy+xz

\displaystyle (\frac{1}{\sqrt2}-\sqrt2)(\frac{2}{\sqrt2}-\sqrt2)

\displaystyle (\frac{1}{\sqrt2})(\frac{2}{\sqrt2})+(\frac{1}{\sqrt2})(-\sqrt2)+(-\sqrt2)(\frac{2}{\sqrt2})+(-\sqrt2)(-\sqrt2)

Simplify all the terms.

\displaystyle 1-1-2+2 = 0

The answer is:  \displaystyle 0

Example Question #231 : Intermediate Single Variable Algebra

Solve:  \displaystyle (7x-4)(3-9x)

Possible Answers:

\displaystyle -63x^2-24x-12

\displaystyle -63x^2-15x-12

\displaystyle -63x^2+57x-12

\displaystyle -63x^2-57x-12

\displaystyle -63x^2-15x-12

Correct answer:

\displaystyle -63x^2+57x-12

Explanation:

Use the FOIL method to simplify the expression. Multiply each term of the first binomial with the terms of the second binomial.

\displaystyle (7x)(3)+(7x)(-9x)+(-4)(3)+(-4)(-9x)

Simplify the expression.

\displaystyle 21x-63x^2-12+36x

Combine like-terms and reorder all the terms from highest to lowest order.

The answer is:  \displaystyle -63x^2+57x-12

Example Question #51 : Foil

Solve:  \displaystyle (\pi-3)(1-3\pi)

Possible Answers:

\displaystyle 4\pi^2-10

\displaystyle -3\pi^2+10\pi-3

\displaystyle -3\pi^2+8\pi-3

\displaystyle -3\pi^2-8\pi-3

\displaystyle -3\pi^2-10\pi-3

Correct answer:

\displaystyle -3\pi^2+10\pi-3

Explanation:

We can expand this expression by using the FOIL method.

Follow the given template and substitute.

\displaystyle (a+b)(c+d) = ac+ad+bc+bd

\displaystyle (\pi-3)(1-3\pi)

\displaystyle =(\pi)(1)+(\pi)(-3\pi)+(-3)(1)+(-3)(-3\pi)

Simplify the terms.

\displaystyle =\pi-3\pi^2-3+9\pi

Combine like-terms.

The answer is:  \displaystyle -3\pi^2+10\pi-3

Example Question #231 : Intermediate Single Variable Algebra

Solve the expression:  \displaystyle (4-x)(7+6x)

Possible Answers:

\displaystyle -6x^2+17x+28

\displaystyle -6x^2-31x+28

\displaystyle -6x^2-17x+28

\displaystyle -6x^2-12x+38

\displaystyle -6x^2+31x+28

Correct answer:

\displaystyle -6x^2+17x+28

Explanation:

Use the FOIL method to simplify this expression.

Multiply each term of the first binomial with the terms of the second binomial.

\displaystyle (4)(7) + (4)(6x) + (-x)(7) + (-x)(6x)

Simplify the expression.

\displaystyle 28+24x-7x-6x^2

Combine like terms.

The answer is:  \displaystyle -6x^2+17x+28

Example Question #71 : Quadratic Equations And Inequalities

Evaluate:  \displaystyle (\sqrt{3}-3)(\sqrt5-5)

Possible Answers:

\displaystyle -7\sqrt5 +15

\displaystyle \sqrt{15}-5\sqrt3 -3\sqrt5 +15

\displaystyle \sqrt{15}-8\sqrt3 +15

\displaystyle -7\sqrt{15} +15

\displaystyle \sqrt{15}-8\sqrt5 +15

Correct answer:

\displaystyle \sqrt{15}-5\sqrt3 -3\sqrt5 +15

Explanation:

Use the FOIL method to simplify this expression.  Use the following template:

\displaystyle (a+b)(c+d)= ac+ad+bc+bd

\displaystyle (\sqrt{3}-3)(\sqrt5-5)

\displaystyle = (\sqrt{3})(\sqrt{5 })+(\sqrt{3})(-5)+(-3)(\sqrt{5})+(-3)(-5)

Simplify each term.  Uncommon radical terms cannot be combined.

The answer is:  \displaystyle \sqrt{15}-5\sqrt3 -3\sqrt5 +15

Example Question #55 : Foil

Evaluate:  \displaystyle (x^2+3)(-9x^2+4)

Possible Answers:

\displaystyle -9x^4+23x^2+12

\displaystyle -9x^4-16x^2+12

\displaystyle -9x^4-23x^2+12

\displaystyle -9x^4-48x^2+12

\displaystyle -9x^4-31x^2+12

Correct answer:

\displaystyle -9x^4-23x^2+12

Explanation:

Use the FOIL method to simplify this expression.  Use the following formula as a template to solve the expression:

\displaystyle (w+x)(y+z)= wy+wz+xy+xz

For \displaystyle (x^2+3)(-9x^2+4),

\displaystyle (x^2)(-9x^2)+(x^2)(4)+(3)(-9x^2)+(3)(4)

Simplify all the terms.

\displaystyle -9x^4+4x^2-27x^2+12

Combine like terms.

The answer is:  \displaystyle -9x^4-23x^2+12

Example Question #71 : Quadratic Equations And Inequalities

Simplify the binomials:   \displaystyle (\frac{2}{3}x+3)(\frac{2}{5}x+2)

Possible Answers:

\displaystyle \frac{4}{15}x^2+\frac{38}{15}x+6

\displaystyle \frac{1}{2}x^2+\frac{14}{5}x+6

\displaystyle \frac{4}{15}x^2+\frac{14}{5}x+6

\displaystyle \frac{1}{2}x^2+\frac{38}{15}x+6

Correct answer:

\displaystyle \frac{4}{15}x^2+\frac{38}{15}x+6

Explanation:

Use the FOIL method to simplify this expression.

\displaystyle (\frac{2}{3}x+3)(\frac{2}{5}x+2)

\displaystyle =(\frac{2}{3}x)(\frac{2}{5}x)+(\frac{2}{3}x)(2)+(3)(\frac{2}{5}x)+(3)(2)

Simplify all the terms in parentheses.

\displaystyle \frac{4}{15}x^2+\frac{4}{3}x+\frac{6}{5}x+6

Combine the center two terms.

\displaystyle \frac{4}{3}x+\frac{6}{5}x = \frac{20}{15}x+\frac{18}{15}x = \frac{38}{15}x

The answer is:  \displaystyle \frac{4}{15}x^2+\frac{38}{15}x+6

Example Question #57 : Foil

Evaluate:  \displaystyle (4x-6)(7x+3)

Possible Answers:

\displaystyle 28x^2+54x-18

\displaystyle 28x^2+30x-18

\displaystyle 28x^2-54x-18

\displaystyle 28x^2-30x-18

\displaystyle 28x^2-46x-18

Correct answer:

\displaystyle 28x^2-30x-18

Explanation:

Use the FOIL method to simplify this expression.

\displaystyle (a+b)(c+d) = ac+ad+bc+bd

Follow this equation for the given problem.

\displaystyle (4x-6)(7x+3) = (4x)(7x)+(4x)(3)+(-6)(7x)+(-6)(3)

Simplify the parentheses.

\displaystyle 28x^2+12x-42x-18

Combine like-terms.

The answer is:  \displaystyle 28x^2-30x-18

Example Question #58 : Foil

Solve:  \displaystyle (5x+18)(3x-1)

Possible Answers:

\displaystyle 15x^2+49x-18

\displaystyle 15x^2-59x-18

\displaystyle 15x^2+59x-18

\displaystyle 15x^2-49x-18

\displaystyle 15x^2-3x-18

Correct answer:

\displaystyle 15x^2+49x-18

Explanation:

Solve the expression by using the FOIL method.  Follow the template below.

\displaystyle (w+x)(y+z) = wy+wz+xy+xz

\displaystyle (5x)(3x)+(5x)(-1)+(18)(3x)+(18)(-1)

Simplify the terms.

\displaystyle 15x^2-5x+54x-18

Combine like-terms.

\displaystyle 15x^2-5x+54x-18 = 15x^2+49x-18

The answer is:  \displaystyle 15x^2+49x-18

Learning Tools by Varsity Tutors