Algebra II : Graphing Circle Functions

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Graphing Circle Functions

Determine the graph of the equation

\displaystyle 4(x-2)^2+4(y-3)^2=1

Possible Answers:

Ellipse, centered at \displaystyle (2,3)

Circle, centered at \displaystyle (2,3)with radius \displaystyle r= 1/2

Hyperbola, centered at \displaystyle (2,3)

Circle, centered at \displaystyle (2,3)with radius \displaystyle r= 1/4

Correct answer:

Circle, centered at \displaystyle (2,3)with radius \displaystyle r= 1/2

Explanation:

The equation of a circle in standard for is:

\displaystyle (x-h)^2+(y-k)^2=r^2

Where the center \displaystyle (x,y)=(h,k) and the radius of the cirlce is \displaystyle r.

Dividing by 4 on both sides of the equation yields

\displaystyle (x-2)^2+(y-3)^2 = \frac{1}{4}

or

\displaystyle (x-2)^2+(y-3)^2 = \bigg(\frac{1}{2}\bigg)^2

an equation whose graph is a circle, centered at (2,3) with radius = .5

Example Question #2 : Graphing Circle Functions

Give the radius and the center of the circle for the equation below. 

\displaystyle (x-3)^{2}+(y + 4)^2 = 16

Possible Answers:

\displaystyle r = 4

\displaystyle \text{Center} = (3, -4)

\displaystyle r = 4 

\displaystyle \text{Center} = (-3, 4)

\displaystyle r = 16 

\displaystyle \text{Center} = (3, -4)

\displaystyle r = 16 

\displaystyle \text{Center} = (3, 4)

\displaystyle r = 4 

\displaystyle \text{Center} = (3, 4)

Correct answer:

\displaystyle r = 4

\displaystyle \text{Center} = (3, -4)

Explanation:

Look at the formula for the equation of a circle below. 

\displaystyle (x - h)^{2}+(y -k)^{2} = r^{2}

Here \displaystyle (h, k) is the center and \displaystyle r is the radius. Notice that the subtraction in the center is part of the formula. Thus, looking at our equation it is clear that the center is \displaystyle (3, -4) and the radius squared is \displaystyle 16. When we square root this value we get that the radius must be \displaystyle 4

Example Question #3 : Graphing Circle Functions

Determine the equation of a circle whose center lies at the point \displaystyle \left ( 3,4\right ) and has a radius of \displaystyle 1.

Possible Answers:

\displaystyle \frac{x^2}{3}-\frac{y^2}{4}=1

\displaystyle (x+3)^2+(y+4)^2=1

\displaystyle \frac{x^2}{3}+\frac{y^2}{4}-1=0

\displaystyle (x-3)^2+(y-4)^2=1

Correct answer:

\displaystyle (x-3)^2+(y-4)^2=1

Explanation:

The equation for a circle with center \displaystyle (h,k) and radius \displaystyle r is :

\displaystyle (x-h)^2+(y-k)^2=r^2

Our circle is centered at \displaystyle (3,4) with radius \displaystyle r=1, so the equation for this circle is :

\displaystyle (x-3)^2+(y-4)^2=1

Example Question #11 : Circle Functions

\displaystyle \small f(x)=(x-2)^2+(y+5)^2=36

What is the radius of the circle?

Possible Answers:

\displaystyle \small \small r=5

\displaystyle \small r=6

\displaystyle \small \small r=2

\displaystyle \small \small r=3

\displaystyle \small \small r=36

Correct answer:

\displaystyle \small r=6

Explanation:

The parent equation of a circle is represented by \displaystyle \small f(x)=(x-h)^2+(y-k)^2=r^2. The radius of the circle is equal to \displaystyle \small r. The radius of the cirle is \displaystyle \small \sqrt{36}.

Example Question #5 : Graphing Circle Functions

What is the center of the circle expressed by the funciton \displaystyle \small x^2+4x+y^2=5?

Possible Answers:

\displaystyle \small (5,0)

\displaystyle \small (-5,0)

\displaystyle \small (-2,0)

\displaystyle \small (2,0)

\displaystyle \small (0,0)

Correct answer:

\displaystyle \small (-2,0)

Explanation:

The equation can be rewritten so that it looks like the parent equation for a circle \displaystyle \small (x-h)^2+(y-k)^2=r^2. After completeing the square, the equation changes from \displaystyle \small x^2+4x+y^2=5 to \displaystyle \small x^2+4x+4+y^2=9. From there it can be expressed as \displaystyle \small (x+2)^2+y^2=9. Therefore the center of the circle is at \displaystyle \small (-2,0).

Example Question #6 : Graphing Circle Functions

The graph of the equation 

\displaystyle x^{2} + y^{2} + 10x - 8y = 84

is a circle with what as the length of its radius?

Possible Answers:

\displaystyle 10

\displaystyle 25

\displaystyle 5\sqrt{5}

\displaystyle 5

\displaystyle 10\sqrt{5}

Correct answer:

\displaystyle 5\sqrt{5}

Explanation:

Rewrite the equation of the circle in standard form

\displaystyle (x - h)^{2} + \left ( y - k\right )^{2} = r^{2}

as follows:

\displaystyle x^{2} + y^{2} + 10x - 8y = 84

\displaystyle x^{2} + 10x+ y^{2} - 8y = 84

Since \displaystyle \left (\frac{10}{2} \right ) ^{2} = 5 ^{2} = 25 and \displaystyle \left (\frac{-8}{2} \right ) ^{2} = (-4)^{2} = 16, we complete the squares by adding:

\displaystyle x^{2} + 10x+ 25 + y^{2} - 8y + 16 = 84 + 25 + 16

\displaystyle (x+5) ^{2} + \left (y- 4 \right ) ^{2} = 125

The standard form of the equation sets 

\displaystyle r^{2} = 125,

so the radius of the circle is 

\displaystyle r = \sqrt{125} = \sqrt{25} \cdot \sqrt{5} = 5 \sqrt{5}

Example Question #11 : Circle Functions

What are the coordinates of the center of a circle with the equation \displaystyle (x - 1)^2 + (y - 6)^2 = 25?

Possible Answers:

\displaystyle (1, 6)

\displaystyle (-1, -6)

\displaystyle (-6, -1)

\displaystyle (6, 1)

Correct answer:

\displaystyle (1, 6)

Explanation:

The equation of a circle is \displaystyle (x - h)^2 + (y - k)^2 = r^2, in which (h, k) is the center of the circle. To derive the center of a circle from its equation, identify the constants immediately following x and y, and flip their signs. In the given equation, x is followed by -1 and y is followed by -6, so the coordinates of the center must be (1, 6).

 

Example Question #8 : Graphing Circle Functions

What is the radius of a circle with the equation \displaystyle x^2 + 6x + y^2 + 2y = -6?

Possible Answers:

\displaystyle 4

\displaystyle 3

\displaystyle 2

\displaystyle 1

Correct answer:

\displaystyle 2

Explanation:

 To convert the given equation into the format \displaystyle (x - h)^2 + (y - k)^2 = r^2, complete the square by adding \displaystyle (b/2a)^2 to the x-terms and to the y-terms. 

 

\displaystyle x^2 + 6x + y^2 + 2y = -6

\displaystyle x^2 + 6x + (6/2)^2 + y^2 + 2y + (2/2)^2 = -6 + (6/2)^2 + (2/2)^2

\displaystyle x^2 + 6x + 9 + y^2 + 2y + 1 = -6 + 9 + 1

\displaystyle (x + 3)^2 + (y + 1)^2 = 4

 

The square root of 4 is 2, so the radius of the circle is 2. 

 

 

Example Question #9 : Graphing Circle Functions

What is the radius of a circle with the equation \displaystyle x^2 + 8x + y^2 - 4y = 5?

Possible Answers:

\displaystyle 4

\displaystyle 3

\displaystyle 2

\displaystyle 5

Correct answer:

\displaystyle 5

Explanation:

 To convert the given equation into the format \displaystyle (x - h)^2 + (y - k)^2 = r^2, complete the square by adding \displaystyle (b/2a)^2 to the x-terms and to the y-terms. 

 

\displaystyle x^2 + 8x + y^2 - 4y = 5

\displaystyle x^2 + 8x + (8/2)^2 + y^2 - 4y + (-4/2)^2 = 5 + (8/2)^2 + (-4/2)^2

\displaystyle x^2 + 8x + 16 + y^2 - 4y + 4 = 5 + 16 + 4

\displaystyle (x + 4)^2) + (y - 2)^2 = 25

 

The square root of 25 is 5, so the radius of the circle is 5.

 

 

Example Question #1 : Graphing Circle Functions

Which equation does this graph represent?

Screen shot 2020 08 26 at 8.40.10 am

Possible Answers:

\displaystyle x^2 + y^2 = 3

\displaystyle x^2 + y^2 = 9

\displaystyle (x - 3)^2 + (y + 3)^2 = 1

\displaystyle (x + 3)^2 + (y - 3)^2 = 1

Correct answer:

\displaystyle x^2 + y^2 = 9

Explanation:

The equation of a circle is \displaystyle (x - h)^2 + (y - k)^2 = r^2, in which (h, k) is the center of the circle and r is its radius. Because the graph of the circle is centered at (0, 0), h and k are both 0. Because the radius is 3, the right side of the equation is equal to 9.

Learning Tools by Varsity Tutors