Algebra II : Geometric Sequences

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #11 : Summations And Sequences

Find the 26th term of the sequence \displaystyle 1,771,561, \enspace -1,449,459, \enspace 1,185,921, \enspace -970,299, ...

Possible Answers:

\displaystyle -3.268

\displaystyle 9,603.987

\displaystyle 3.268

\displaystyle -11,738.206

\displaystyle 11,738.206

Correct answer:

\displaystyle -11,738.206

Explanation:

First we need to find the common ratio, which we can do by dividing the second term by the first:

\displaystyle -1,449,459 \div 1,771,561 = 0.\overline{81}

The first term is \displaystyle 1,771, 561 (-0.\overline{81} ) ^ 0, the second term is \displaystyle 1,771, 561 (-0.\overline{81})^ 1, so the 26th term is \displaystyle 1,771, 561 (-0.\overline{81})^{ 25} = -11,738.206

Example Question #11 : Geometric Sequences

Find the common ratio for this geometric series:

\displaystyle 1,7,49,343,2401

Possible Answers:

\displaystyle 49

\displaystyle \frac{1}{7}

\displaystyle 343

\displaystyle 7

Correct answer:

\displaystyle 7

Explanation:

Find the common ratio for this geometric series:

\displaystyle 1,7,49,343,2401

The common ratio of a geometric series can be found by dividing any term by the term before it. More generally:

\displaystyle r=\frac{N_t}{N_{t-1}}

So, do try the following:

\displaystyle r=\frac{343}{49}=7

So our common ratio is 7

Example Question #12 : Summations And Sequences

Find the next term in this geometric series:

\displaystyle 1,7,49,343,2401

Possible Answers:

\displaystyle 16814

\displaystyle 16807

\displaystyle 7

\displaystyle 343

Correct answer:

\displaystyle 16807

Explanation:

Find the next term in this geometric series:

\displaystyle 1,7,49,343,2401

to find the next term, we must first find the common ratio.

The common ratio of a geometric series can be found by dividing any term by the term before it. More generally:

\displaystyle r=\frac{N_t}{N_{t-1}}

So, do try the following:

\displaystyle r=\frac{343}{49}=7

So our common ratio is 7

Next, find the next term in the series by multiplying our last term by 7

\displaystyle N_{t+1}=2401*7=16807

Making our next term 16807

Example Question #14 : Summations And Sequences

What is \displaystyle a if \displaystyle S_2 = \frac{2}{3} and \displaystyle r=\frac{1}{6}?

Possible Answers:

\displaystyle \frac{4}{7}

\displaystyle \frac{1}{5}

\displaystyle \frac{6}{11}

\displaystyle \frac{1}{2}

\displaystyle \frac{3}{8}

Correct answer:

\displaystyle \frac{4}{7}

Explanation:

Use the geometric series summation formula.

\displaystyle \sum_{i=1}^{n}a_i=a(\frac{1-r^n}{1-r})

Substitute \displaystyle S_2 = \frac{2}{3} into \displaystyle \sum_{i=1}^{n}a_i, and replace the \displaystyle r and \displaystyle n terms.  The value of \displaystyle n is two.

\displaystyle \frac{2}{3}=a(\frac{1-(\frac{1}{6})^2}{1-\frac{1}{6}})

Simplify the terms on the right and solve for \displaystyle a.

\displaystyle \frac{2}{3}=a(\frac{1-\frac{1}{36}}{1-\frac{1}{6}})

\displaystyle \frac{2}{3}=a(\frac{\frac{35}{36}}{ \frac{5}{6}} )

Rewrite the complex fraction using a division sign.

\displaystyle \frac{2}{3}=a(\frac{35}{36} \div \frac{5}{6})

Change the sign from division to a multiplication sign and switch the second term.

\displaystyle \frac{2}{3}=a(\frac{35}{36} \times \frac{6}{5})

Simplify the terms inside the parentheses.

\displaystyle \frac{2}{3}=a(\frac{7}{6})

Isolate the variable by multiplying six-seventh on both sides.

\displaystyle \frac{2}{3}\cdot \frac{6}{7}=a(\frac{7}{6}) \cdot \frac{6}{7}

Simplify both sides.

\displaystyle a=\frac{4}{7}

The answer is:  \displaystyle \frac{4}{7}

Example Question #12 : Mathematical Relationships And Basic Graphs

What is the next term given the following terms?  \displaystyle [\frac{1}{3},\frac{4}{3}, \frac{16}{3},...]

Possible Answers:

\displaystyle 7

\displaystyle \frac{20}{3}

\displaystyle \frac{64}{3}

\displaystyle 4

\displaystyle 64

Correct answer:

\displaystyle \frac{64}{3}

Explanation:

Divide the second term with the first term, and the third term with the second term.

\displaystyle \frac{4}{3}\div\frac{1}{3} = \frac{4}{3}\times \frac{3}{1} = 4

\displaystyle \frac{16}{3}\div\frac{4}{3}=\frac{16}{3}\times\frac{3}{4}=4

The common ratio of this geometric sequence is four.

Multiply the third term by four.

\displaystyle \frac{16}{3}\times 4 = \frac{64}{3}

The answer is:  \displaystyle \frac{64}{3}

Example Question #14 : Summations And Sequences

Determine the 10th term if the first term is \displaystyle \frac{1}{3} and the common ratio is \displaystyle \frac{2}{5}.  Answer in scientific notation.

Possible Answers:

\displaystyle 3.495\times 10^{-5}

\displaystyle 8.338\times 10^{-4}

\displaystyle 4.127\times 10^{-7}

\displaystyle 8.738\times 10^{-5}

\displaystyle 1.776\times 10^{-9}

Correct answer:

\displaystyle 8.738\times 10^{-5}

Explanation:

Write the formula to find the n-th term for a geometric sequence.

\displaystyle a_n = a_1\cdot r^{n-1}

Substitute the known values into the equation.

\displaystyle a_{10} = (\frac{1}{3})\cdot (\frac{2}{5})^{10-1}= \frac{512}{5859375}

This fraction is equivalent to:  \displaystyle 8.738\times 10^{-5}

The 19th term is:  \displaystyle 8.738\times 10^{-5}

Example Question #2672 : Algebra Ii

Determine the sum:  \displaystyle 10+1+\frac{1}{10}+...+\frac{1}{10,000}

Possible Answers:

\displaystyle \frac{11,111}{9,999}

\displaystyle \frac{100}{9}

\displaystyle \frac{111,111}{10,000}

\displaystyle \frac{111,111}{20,000}

\displaystyle \frac{10,000}{999}

Correct answer:

\displaystyle \frac{111,111}{10,000}

Explanation:

Write the sum formula for a geometric series.

Identify the number of terms that exist.

\displaystyle [10,1,\frac{1}{10},\frac{1}{100},\frac{1}{1,000},\frac{1}{10,000}]

There are six existing terms:  \displaystyle n=6

Substitute the terms into the formula.

\displaystyle = \frac{\frac{1,000,000}{100,000}-\frac{1}{100,000}}{\frac{10}{10}-\frac{1}{10}} = \frac{\frac{999,999}{100,000}}{\frac{9}{10}}

Simplify the complex fraction.

\displaystyle \frac{999,999}{100,000} \div \frac{9}{10} = \frac{999,999}{100,000} \times \frac{10}{9} = \frac{111,111}{10,000}

The sum is:  \displaystyle \frac{111,111}{10,000}

Example Question #12 : Geometric Sequences

If the first term of a geometric sequence is 4, and the common ratio is \displaystyle \frac{2}{3}, what is the fifth term?

Possible Answers:

\displaystyle \frac{325}{27}

\displaystyle \frac{964}{81}

\displaystyle \frac{64}{81}

\displaystyle \frac{844}{81}

Correct answer:

\displaystyle \frac{64}{81}

Explanation:

Write the formula for the n-th term of the geometric sequence.

\displaystyle a_n = a_1r^{n-1}

Substitute the first term and common ratio.

The equation is:  \displaystyle a_n = 4(\frac{2}{3})^{n-1}

To find the fifth term, substitute \displaystyle n=5.

\displaystyle a_5 = 4(\frac{2}{3})^{5-1} = 4(\frac{2}{3})^4 =4(\frac{2}{3})(\frac{2}{3})(\frac{2}{3})(\frac{2}{3})= 4(\frac{16}{81})

The answer is:  \displaystyle \frac{64}{81}

Example Question #12 : Summations And Sequences

Given the sequence \displaystyle [3,9,27,...], what is the 7th term?

Possible Answers:

\displaystyle 2187

\displaystyle 6561

\displaystyle 2178

\displaystyle 729

\displaystyle 6651

Correct answer:

\displaystyle 2187

Explanation:

The formula for geometric sequences is defined by:  

\displaystyle ar^{n-1}

The term \displaystyle a represents the first term, while \displaystyle r is the common ratio.  The term \displaystyle n represents the terms.

Substitute the known values.

\displaystyle 3(3)^{n-1}

To determine the seventh term, simply substitute \displaystyle n=7 into the expression.

\displaystyle 3(3)^{7-1}

The answer is:  \displaystyle 2187

Example Question #12 : Geometric Sequences

A geometric sequence begins as follows:

\displaystyle a_{1} = 6

\displaystyle a_{2} = 18

Which of the following gives the definition of its \displaystyle nth term?

Possible Answers:

\displaystyle a_{n} = 6 \cdot 3^{ n }

\displaystyle a_{n} = 6 \cdot 2^{ n }

\displaystyle a_{n} = 2 \cdot 6^{ n }

\displaystyle a_{n} = 2 \cdot 3^{ n }

\displaystyle a_{n} = 3 \cdot 2^{ n }

Correct answer:

\displaystyle a_{n} = 2 \cdot 3^{ n }

Explanation:

The \displaystyle nth term of a geometric sequence is 

\displaystyle a_{n} = a_{1} r ^{n-1}

where \displaystyle a_{1} is its initial term and \displaystyle r is the common ratio between the terms. 

\displaystyle a_{1} = 6

\displaystyle r= \frac{a_{2}}{a_{1}} = \frac{18}{6} = 3

Substituting, the expression becomes 

\displaystyle a_{n} = 6 \cdot 3 ^{n-1}

By factoring and remultiplying, this becomes

\displaystyle a_{n} = 2 \cdot 3 \cdot 3 ^{n-1}

\displaystyle a_{n} = 2 \cdot 3^{1} \cdot 3 ^{n-1}

\displaystyle a_{n} = 2 \cdot 3^{1+n-1}

\displaystyle a_{n} = 2 \cdot 3^{ n }

Learning Tools by Varsity Tutors