All Algebra II Resources
Example Questions
Example Question #41 : Factoring Polynomials
Factor the following polynomial: .
Because the term doesn’t have a coefficient, you want to begin by looking at the term () of the polynomial: . Find the factors of that when added together equal the second coefficient (the term) of the polynomial.
There are only four factors of : , and only two of those factors, , can be manipulated to equal when added together and manipulated to equal when multiplied together: (i.e.,).
Example Question #11 : How To Factor A Variable
Factor the following polynomial: .
Because the term doesn’t have a coefficient, you want to begin by looking at the term () of the polynomial: .
Find the factors of that when added together equal the second coefficient (the term) of the polynomial: .
There are seven factors of : , and only two of those factors, , can be manipulated to equal when added together and manipulated to equal when multiplied together:
Example Question #1 : How To Find The Degree Of A Polynomial
Simplify:
1
2x
None of the above
-1
5
-1
The given expression can be re-written as:
Cancel (2x - 5):
Example Question #41 : Factoring Polynomials
For what value of allows one to factor a perfect square trinomial out of the following equation:
Factor out the 7:
Take the 8 from the x-term, cut it in half to get 4, then square it to get 16. Make this 16 equal to C/7:
Solve for C:
Example Question #364 : College Algebra
Factor the trinomial .
We can factor this trinomial using the FOIL method backwards. This method allows us to immediately infer that our answer will be two binomials, one of which begins with and the other of which begins with . This is the only way the binomials will multiply to give us .
The next part, however, is slightly more difficult. The last part of the trinomial is , which could only happen through the multiplication of 1 and 2; since the 2 is negative, the binomials must also have opposite signs.
Finally, we look at the trinomial's middle term. For the final product to be , the 1 must be multiplied with the and be negative, and the 2 must be multiplied with the and be positive. This would give us , or the that we are looking for.
In other words, our answer must be
to properly multiply out to the trinomial given in this question.
Example Question #2 : Quadratic Equations
Solve for x.
x = –5, 5
x = –2/3, –3
x = –5/2, –5
x = –2/5, –5
x = –5
x = –5/2, –5
1) The first step would be to simplify, but since 2, 15, and 25 have no common factors greater than 1, simplification is impossible.
Now we factor. Multiply the first coefficient by the final term and list off the factors.
2 * 25 = 50
Factors of 50 include:
1 + 50 = 51
2 + 25 = 27
5 + 10 = 15
2) Split up the middle term to make factoring by grouping possible.
Note that the "2" and the "10," and the "5" and the "25," have to go together for factoring to come out with integers. Always make sure the groups actually have a common factor to pull.
3) Pull out the common factors from both groups, "2x" from the first and "5" from the second.
4) Factor out the "(x+5)" from both terms.
5) Set each parenthetical expression equal to zero and solve.
2x + 5 = 0, x = –5/2
x + 5 = 0, x = –5
Example Question #6 : How To Factor The Quadratic Equation
Example Question #7 : How To Factor The Quadratic Equation
Factor the following quadratic equation.
When we attempt to factor a quadratic, we must first look for the factored numbers. When quadratics are expressed as the factored numbers are and . Since , we know the factors for 1 are 1 and 1. So we know the terms will be
Looking at our constant, , we see a positive 6. So 6 factors into either 2 and 3 or 1 and 6 (since and ). Since our constant is a positive number, we know that our factors are either both positive, or both negative. (Note: you should know that 2 negative numbers multiplied becomes a positive number).
So to figure out what we must use we look at the part of the quadratic. We are looking for 2 numbers which add up to our . So, 1 and 6 do not work, since . But, 2 and 3 are perfect since .
But, since our is a negative 5, we know we must use negative numbers in our factored expression. Thus, our factoring must become
or
Example Question #364 : Variables
Factor the following:
Using the FOIL rule, only yields the same polynomial as given in the question.
Example Question #365 : Variables
Factor the following polynomial:
Can't be factored
When asked to factor a difference of squares, the solution will always be the square roots of the coefficients with opposite signs in each pair of parentheses.
Certified Tutor
Certified Tutor