Algebra II : Basic Operations with Complex Numbers

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #2043 : Mathematical Relationships And Basic Graphs

\displaystyle (3i+2)-(6i+5)

Possible Answers:

\displaystyle -3i+3

\displaystyle -18+27i+10

\displaystyle 6i

\displaystyle -8+27i

\displaystyle 9i-3

Correct answer:

\displaystyle 9i-3

Explanation:

Nothing can be simplified in either parentheses, so the first step is to distribute the negative sign to the second parentheses

\displaystyle 3i+2-6i-5

Then, you combine similar terms remembering that terms with i cannot combine with those with no i

\displaystyle 9i-3

Example Question #32 : Basic Operations With Complex Numbers

Simplify:  \displaystyle 3i^2-2i^5+4-5i^4

Possible Answers:

\displaystyle 2i+4

\displaystyle -2i-4

\displaystyle 2i-4

\displaystyle -2i+6

Correct answer:

\displaystyle -2i-4

Explanation:

In order to simplify this, we will need to identify the solution to each term with an imaginary power.

Recall that \displaystyle i=\sqrt{-1}.  Write the solutions for the powers given.

\displaystyle i^2= -1

\displaystyle i^4 = i^2\cdot i^2 = (-1)(-1) = 1

\displaystyle i^5 = i^4\cdot i = i

Rewrite and replace each term with the simplified forms.

\displaystyle 3i^2-2i^5+4-5i^4 = 3(-1)-2(i)+4-5

Combine like-terms.

\displaystyle -3-2i+4-5= -2i-4

The answer is:  \displaystyle -2i-4

Example Question #31 : Basic Operations With Complex Numbers

\displaystyle (2i+3)(5i-2)

Possible Answers:

\displaystyle -16+11i

\displaystyle 10i^{2}-6

\displaystyle 10i-1

\displaystyle 10i-6

\displaystyle 7i+1

Correct answer:

\displaystyle -16+11i

Explanation:

This problem should be foiled. Multiply the first two numbers of each parentheses, the outer numbers of the parentheses, the inner numbers of the two parentheses, and the last numbers of the parentheses.

\displaystyle 10i^{2}-4i+15i-6

Combine like terms

\displaystyle 10i^{2}+11i-6

Simplify the imaginary numbers. I squared equals -1

\displaystyle 10(-1)+11i-6

\displaystyle -10+11i-6

\displaystyle -16+11i

Example Question #31 : Basic Operations With Complex Numbers

\displaystyle 3i\cdot -2i\cdot 5i

Possible Answers:

\displaystyle 30

\displaystyle 30i

\displaystyle -30

\displaystyle 10i

\displaystyle -30i

Correct answer:

\displaystyle 30i

Explanation:

First perform the multiplication on the coefficients and the i's

\displaystyle 3i\cdot -2i\cdot 5i

\displaystyle -30i^{3}

i cubed is equal to negative i

\displaystyle -30(-i)

\displaystyle 30i

Example Question #92 : Imaginary Numbers

\displaystyle 5i\cdot i\cdot 4i\cdot -3i

Possible Answers:

\displaystyle -60i+i^{3}

\displaystyle -60

\displaystyle 60

\displaystyle 60i

\displaystyle -60i

Correct answer:

\displaystyle -60

Explanation:

Multiply the coefficients and the i's together

\displaystyle 5i\cdot i\cdot 4i\cdot -3i

\displaystyle -60i^{4}

i to the fourth power is the same as the number one.

\displaystyle -60(1)

\displaystyle -60

Example Question #32 : Basic Operations With Complex Numbers

\displaystyle (11i-2)(10i-5)

Possible Answers:

\displaystyle -110-75i

\displaystyle 21i-7

\displaystyle -175i

\displaystyle -100-75i

\displaystyle 110i+10

Correct answer:

\displaystyle -100-75i

Explanation:

This problem should be foiled. Multiply the first numbers of the parentheses, the outer numbers of the parentheses, the inner numbers of the parentheses, and the last numbers of the parentheses

\displaystyle (11i-2)(10i-5)

\displaystyle 110i^{2}-55i-20i+10

Combine like terms

\displaystyle 110i^{2}-75i+10

Simplify i squared to negative one

\displaystyle 110(-1)-75i+10

\displaystyle -110-75i+10

\displaystyle -100-75i

Example Question #4712 : Algebra Ii

\displaystyle 8i(10i+5-4i+2i^{2})

Possible Answers:

\displaystyle 48i+3

\displaystyle 116i-2

\displaystyle 116i+2

\displaystyle 48i-7

\displaystyle -48+24i

Correct answer:

\displaystyle -48+24i

Explanation:

This problem can either be solved by simplifying the numbers in the parentheses first or by distributing the 8i to all terms in the parentheses. I will show simplifying the parentheses first.

Remember that i squared can be simplified to negative one and like terms can be combined.

\displaystyle 8i(10i+5-4i+2i^{2})

\displaystyle 8i(6i+5+2(-1))

\displaystyle 8i(6i+5-2)

\displaystyle 8i(6i+3)

Now distribute the 8i to both terms of the parentheses.

\displaystyle 48i^{2}+24i

Again, i squared can be changed to negative one

\displaystyle 48(-1)+24i

\displaystyle -48+24i

Example Question #33 : Basic Operations With Complex Numbers

\displaystyle (6i-7)-(15i+2)+(10i-4)

Possible Answers:

\displaystyle -i-11

\displaystyle i-13

\displaystyle -i-13

\displaystyle -i+11

\displaystyle i-11

Correct answer:

\displaystyle i-13

Explanation:

Nothing can be simplified in the parentheses but the sign outside of each parentheses can be distributed to each number inside.

\displaystyle (6i-7)-(15i+2)+(10i-4)

\displaystyle 6i-7-15i-2+10i-4

Combine like terms to get the answer

\displaystyle i-13

Example Question #32 : Basic Operations With Complex Numbers

\displaystyle (-7i-15)(2+i)

Possible Answers:

\displaystyle -29i

\displaystyle -29i-23

\displaystyle -i

\displaystyle -29i-37

\displaystyle i

Correct answer:

\displaystyle -29i-23

Explanation:

This problem should be foiled. Multiply the first numbers, the outer numbers, the inner numbers, and the last numbers of the parentheses.

\displaystyle (-7i-15)(2+i)

\displaystyle -14i-7i^{2}-30-15i

Combine like terms

\displaystyle -29i-7i^{2}-30

Simplifying i squared to negative one

\displaystyle -29i-7(-1)-30

\displaystyle -29i+7-30

\displaystyle -29i-23

Example Question #32 : Basic Operations With Complex Numbers

Evaluate:  \displaystyle i^{2000}-i^{1998}

Possible Answers:

\displaystyle 1-i

\displaystyle 0

\displaystyle 1+i

\displaystyle 2

Correct answer:

\displaystyle 2

Explanation:

Recall that \displaystyle i=\sqrt{-1}.

Write the first few terms of the powers of the imaginary number.

\displaystyle i^2 = -1

\displaystyle i^3 = i^2\cdot i = -i

\displaystyle i^4=i^2\cdot i^2 = (-1)\cdot (-1) = 1

\displaystyle i^5 = i^4\cdot i = i

Notice that the pattern will repeat itself for higher powers.

Rewrite the expression given as a product of exponents.

\displaystyle i^{2000}-i^{1998} =(i^4)^{500}- (i^2)^{999}

Simplify using the known values of \displaystyle i^4 and \displaystyle i^2.

\displaystyle (i^4)^{500}- (i^2)^{999} = 1^{500}-(-1)^{999}

The quantity of a negative number to an odd power will result in a negative number.  

\displaystyle 1-(-1) = 2

The answer is:  \displaystyle 2

Learning Tools by Varsity Tutors