Algebra 1 : Linear Equations

Study concepts, example questions & explanations for Algebra 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #141 : Linear Equations

Solve for \(\displaystyle e\):

\(\displaystyle e-10=-12\)

Possible Answers:

\(\displaystyle e=22\)

\(\displaystyle e=-2\)

\(\displaystyle e=-12\)

\(\displaystyle e=2\)

Correct answer:

\(\displaystyle e=-2\)

Explanation:

\(\displaystyle e-10=-12\)

Add \(\displaystyle 10\) to both sides of the equation.

\(\displaystyle e-10+10=-12+10\)

\(\displaystyle e=-2\)

Example Question #142 : Linear Equations

Solve for \(\displaystyle q\):

\(\displaystyle q-22=21\)

Possible Answers:

\(\displaystyle q=-1\)

\(\displaystyle q=43\)

\(\displaystyle q=24\)

\(\displaystyle q=-41\)

Correct answer:

\(\displaystyle q=43\)

Explanation:

\(\displaystyle q-22=21\)

Add \(\displaystyle 22\) to both sides of the equation.

\(\displaystyle q-22+22=21+22\)

\(\displaystyle q=43\)

Example Question #143 : Linear Equations

Solve for \(\displaystyle b\):

\(\displaystyle b-19=12\)

Possible Answers:

\(\displaystyle b=-2\)

\(\displaystyle b=31\)

\(\displaystyle b=20\)

\(\displaystyle b=19\)

Correct answer:

\(\displaystyle b=31\)

Explanation:

\(\displaystyle b-19=12\)

Add \(\displaystyle 19\) to both sides of the equation.

\(\displaystyle b-19+19=12+19\)

\(\displaystyle b=31\)

Example Question #144 : Linear Equations

Solve for \(\displaystyle z\):

\(\displaystyle \frac{z}{5}=-9\)

Possible Answers:

\(\displaystyle z=-\frac{9}{5}\)

\(\displaystyle z=-36\)

\(\displaystyle z=-45\)

\(\displaystyle z=4\)

Correct answer:

\(\displaystyle z=-45\)

Explanation:

\(\displaystyle \frac{z}{5}=-9\)

Multiply both sides of the equation by \(\displaystyle 5\).

\(\displaystyle (5)\frac{z}{5}=-9(5)\)

Remember when a negative number is multiplied by a positive number then the answer is negative.

\(\displaystyle z=-45\)

Example Question #145 : Linear Equations

Solve for \(\displaystyle x\):

\(\displaystyle \frac{x}{4}=-8\)

 

Possible Answers:

\(\displaystyle x=-32\)

\(\displaystyle x=-16\)

\(\displaystyle x=-2\)

\(\displaystyle x=-4\)

Correct answer:

\(\displaystyle x=-32\)

Explanation:

\(\displaystyle \frac{x}{4}=-8\)

Multiply both sides by \(\displaystyle 4\).

\(\displaystyle x=-32\)

Example Question #146 : Linear Equations

Solve for \(\displaystyle u\):

\(\displaystyle \frac{u}{12}=-2\)

Possible Answers:

\(\displaystyle u=-\frac{1}{6}\)

\(\displaystyle u=-24\)

\(\displaystyle u=10\)

\(\displaystyle u=-12\)

Correct answer:

\(\displaystyle u=-24\)

Explanation:

\(\displaystyle \frac{u}{12}=-2\)

Multiply both sides by \(\displaystyle 12\).

\(\displaystyle u=-24\)

Example Question #147 : Linear Equations

Solve for \(\displaystyle x\):

\(\displaystyle x-0.9=12.1\)

Possible Answers:

\(\displaystyle x=14.5\)

\(\displaystyle x=11.2\)

\(\displaystyle x=12\)

\(\displaystyle x=13\)

Correct answer:

\(\displaystyle x=13\)

Explanation:

\(\displaystyle x-0.9=12.1\)

Add \(\displaystyle 0.9\) to both sides.

\(\displaystyle x=13\)

Example Question #148 : Linear Equations

Solve for \(\displaystyle x\):

\(\displaystyle \frac{3}{4}x=12\)

Possible Answers:

\(\displaystyle x=14\)

\(\displaystyle x=9\)

\(\displaystyle x=12\)

\(\displaystyle x=16\)

Correct answer:

\(\displaystyle x=16\)

Explanation:

\(\displaystyle \frac{3}{4}x=12\)

Multiply both sides by \(\displaystyle \frac{4}{3}\).

\(\displaystyle x=16\)

Example Question #149 : Linear Equations

Solve for \(\displaystyle x\):

\(\displaystyle \frac{x}{6}=24\)

Possible Answers:

\(\displaystyle x=4\)

\(\displaystyle x=124\)

\(\displaystyle x=144\)

\(\displaystyle x=30\)

Correct answer:

\(\displaystyle x=144\)

Explanation:

\(\displaystyle \frac{x}{6}=24\)

Multiply both sides by \(\displaystyle 6\).

\(\displaystyle x=144\)

Example Question #150 : Linear Equations

Solve for \(\displaystyle x\):

\(\displaystyle \frac{x}{8}=20\)

Possible Answers:

\(\displaystyle x=160\)

\(\displaystyle x=152\)

\(\displaystyle x=\frac{5}{2}\)

\(\displaystyle x=28\)

Correct answer:

\(\displaystyle x=160\)

Explanation:

\(\displaystyle \frac{x}{8}=20\)

Multiply both sides by \(\displaystyle 8\).

\(\displaystyle x=160\)

Learning Tools by Varsity Tutors